
COORDINATED HIGHWAYS ACTION RESPONSE TEAM
STATE HIGHWAY ADMINISTRATION

R1B2A Detailed Design

Contract DBM-9713-NMS
TSR # 9803444

Document # M303-DS-005R0

October 26, 2000
By

Computer Sciences Corporation
PB Farradyne Inc.

Integrated Technology Solutions Inc.

R1B2A Detailed Design Rev0 i 10/26/00

Revision Description Pages Affected Date

0 Initial Release All October 26, 2000

R1B2A Detailed Design Rev0 ii 10/26/00

Table of Contents

1 Introduction ...1-1
1.1 Purpose..1-1

1.2 Objectives..1-1

1.3 Scope..1-1

1.4 Design Process ..1-1

1.5 Design Tools ..1-2

1.6 Work Products..1-2

2 Key Design Concepts..2-2
2.1 Service Application Framework ...2-2

2.2 GUI Application Framework ..2-2

2.3 Access Control ..2-2

2.4 Operations Logging..2-2

2.5 Event Channel Fault Tolerance ..2-2

2.6 Object Publication..2-3

2.7 Database Access..2-3

2.8 Field Communications ...2-3

2.9 Error Processing...2-3

2.10 Packaging ..2-4

3 Package Designs...3-1
3.1 TSSManagement ..3-2

3.1.1 TSSManagement (Class Diagram)...3-2

3.2 TSSManagementModule ...3-10

3.2.1 TSSModuleClassDiagram (Class Diagram)...3-10

3.2.2 RTMSFactoryClassDiagram (Class Diagram)...3-13

3.2.3 RTMSObject (Class Diagram) ...3-16

3.2.4 Sequence Diagrams ..3-22

3.3 GUITSSModule ..3-38

R1B2A Detailed Design Rev0 iii 10/26/00

3.3.1 GUITSSModuleClasses (Class Diagram) ..3-38

3.3.2 Sequence Diagrams ..3-46

3.4 DeviceUtility..3-79

3.4.1 PortLocatorClasses (Class Diagram) ...3-79

3.4.2 Sequence Diagrams ..3-82

3.5 CHARTWebModule ..3-86

3.5.1 CHARTWebModuleClasses (Class Diagram) ...3-86

3.5.2 CHARTWebModule:ModeChanged (Sequence Diagram)......................................3-88

3.5.3 CHARTWebModule:OpStatusChanged (Sequence Diagram)3-89

3.5.4 CHARTWebModule:currentStatusPush (Sequence Diagram)3-90

3.5.5 CHARTWebModule:ConfigChanged (Sequence Diagram)....................................3-91

3.5.6 CHARTWebModule:Initialize (Sequence Diagram) ...3-92

3.5.7 ChartWeb Database Tables ..3-94

3.6 CHART Web Map Server ...3-95

3.6.1 CHART Web Map Server (Class Diagram)...3-95

3.6.2 CHART II Web Map Server Data Service Classes..3-96

3.6.3 CHART II Web Map Server User Service Classes..3-96

3.6.4 CHARTWebMapServerModule:ServiceInternetRequest (Sequence Diagram)3-96

Acronyms
References
Appendix A – Functional Rights
Appendix B – Glossary

R1B2A Detailed Design Rev0 iv 10/26/00

List of Figures

Figure 1. TSSManagement (Class Diagram) ...3-2

Figure 2. TSSModuleClassDiagram (Class Diagram) ...3-10

Figure 3. RTMSFactoryClassDiagram (Class Diagram) ...3-13

Figure 4. RTMSObject (Class Diagram)..3-16

Figure 5. PolledTSSImpl:putInMaintenanceMode (Sequence Diagram)3-22

Figure 6. PolledTSSImpl:putOnline (Sequence Diagram)...3-23

Figure 7. PolledTSSImpl:setConfiguration (Sequence Diagram)..3-24

Figure 8. PolledTSSImpl:takeOffline (Sequence Diagram) ..3-25

Figure 9. RTMSFactoryImpl:constructor (Sequence Diagram)...3-26

Figure 10. RTMSFactoryImpl:createRTMS (Sequence Diagram) ..3-27

Figure 11. RTMSFactoryImpl:CurrentStatusPush (Sequence Diagram)...................................3-28

Figure 12. RTMSFactoryImpl:remove (Sequence Diagram)...3-29

Figure 13. RTMSImpl:constructor (Sequence Diagram)...3-30

Figure 14. RTMSImpl:poll (Sequence Diagram)...3-32

Figure 15. RTMSImpl:remove (Sequence Diagram)...3-33

Figure 16. TSSManagementModule:initialize (Sequence Diagram) ...3-34

Figure 17. TSSManagementModule:shutdown (Sequence Diagram)..3-35

Figure 18. TSSPollingTask:run (Sequence Diagram)..3-37

Figure 19. GUITSSModuleClasses (Class Diagram)...3-38

Figure 20. GUIRTMSModelSupporter:getTSSCreationMenuReps (Sequence Diagram)3-46

Figure 21. GUIRTMSModelSupporter:createTSSWrapper (Sequence Diagram).....................3-47

Figure 22. GUIRTMS:setConfiguration (Sequence Diagram) ..3-48

Figure 23. GUITSS:actionPerformed (Sequence Diagram)...3-49

Figure 24. GUITSS:allowSetDesc (Sequence Diagram) ...3-50

Figure 25. GUITSS:comparePropertyValues (Sequence Diagram)...3-51

Figure 26. GUITSS:doProperties (Sequence Diagram) ...3-53

Figure 27. GUITSS:getDesc (Sequence Diagram) ..3-54

Figure 28. GUITSS:getImage (Sequence Diagram) ..3-55

Figure 29. GUITSS:getMSMenuItemReps (Sequence Diagram) ..3-57

R1B2A Detailed Design Rev0 v 10/26/00

Figure 30. GUITSS:getPropertyValue (Sequence Diagram) ...3-58

Figure 31. GUITSS:getSSMenuItemReps (Sequence Diagram) ...3-60

Figure 32. GUITSS:putInMaintMode (Sequence Diagram) ..3-61

Figure 33. GUITSS:putOnline (Sequence Diagram) ...3-62

Figure 34. GUITSS:refresh (Sequence Diagram) ..3-63

Figure 35. GUITSS:remove (Sequence Diagram) ...3-64

Figure 36. GUITSS:takeOffline (Sequence Diagram) ...3-65

Figure 37. GUITSSGroup:actionPerformed (Sequence Diagram) ..3-66

Figure 38. GUITSSGroup:getAllNavProperties (Sequence Diagram)3-67

Figure 39. GUITSSGroup:getSSMenuItemReps (Sequence Diagram)3-68

Figure 40. GUITSSModule:discoverEventChannels (Sequence Diagram)3-69

Figure 41. GUITSSModule:discoverObjects (Sequence Diagram) ...3-70

Figure 42. GUITSSModule:getMenuItemReps (Sequence Diagram)3-71

Figure 43. GUITSSModule:handleCommand (Sequence Diagram)..3-72

Figure 44. GUITSSModule:loggedIn (Sequence Diagram)...3-73

Figure 45. GUITSSModule:push (Sequence Diagram) ...3-75

Figure 46. GUITSSModule:loggedOut (Sequence Diagram) ..3-76

Figure 47. GUITSSModule:shutdown (Sequence Diagram) ...3-77

Figure 48. GUITSSModule:startup (Sequence Diagram) ..3-78

Figure 49. PortLocatorClasses (Class Diagram) ..3-79

Figure 50. ModemPortLocator:connectPort (Sequence Diagram)...3-83

Figure 51 PortLocator:getConnectedPort (Sequence Diagram)...3-85

Figure 53. CHARTWebModule:ModeChanged (Sequence Diagram)3-88

Figure 54. CHARTWebModule:OpStatusChanged (Sequence Diagram).................................3-89

Figure 55. CHARTWebModule:currentStatusPush (Sequence Diagram).................................3-90

Figure 56. CHARTWebModule:ConfigChanged (Sequence Diagram)3-91

Figure 57. CHARTWebModule:Initialize (Sequence Diagram)..3-93

Figure 58. CHARTWeb Database Tables ..3-94

Figure 59 CHART Web Map Server Business Classes ...3-95

Figure 60. CHARTWebMapServer:ServiceInternetRequest (Sequence Diagram)3-97

R1B2A Detailed Design Rev0 vi 10/26/00

List of Tables
Table 1 Package Descriptions ...2-4

R1B2A Detailed Design Rev0 1-1 10/26/00

1 Introduction

1.1 Purpose
This document describes the detailed design of the CHART II system software for Release 1,
Build 2A. This design refines the high level design presented in document M303-DS-004,
“R1B2A High Level Design,” to show details regarding the implementation of the high level
design. This software release adds functionality to the CHART II system to allow RTMS devices
to be configured via the CHART II GUI and to allow data collected from the RTMS devices to
be passed to the CHART web site.

1.2 Objectives
The main objective of this design is to provide software developers with details regarding the
implementation of the system components described in the high level design to fit within the
existing CHART II R1B2 system.

1.3 Scope
This design is limited to components needed to fulfill the requirements of release 1, build 2A of
the CHART II system. This design is an add-on to the existing CHART II R1B2 system and
therefore detailed design contained in the “R1B2 Servers Detailed Design” and “R1B2 GUI
Detailed Design” documents should be referenced for background information pertaining to this
design.

This design document does not include design of the database schema used to persist data.

1.4 Design Process
As in the high level design, object-oriented analysis and design techniques were used in creating
this design. As such, much of the design is documented using diagrams that conform to the
Unified Modeling Language (UML), a de facto standard for diagramming object-oriented
designs.
In the high level design, system interfaces were identified and specified in a package named
TSSManagement. The interfaces from the high level design were brought forward and enhanced
slightly with more detail. The TSSManagementModule package was created to provide the
implementation of these interfaces. The GUITSSModule package was created to provide a GUI
module to allow Transportation Sensor Systems to be viewed and configured via the CHART II
GUI.

Each of these packages (TSSManagementModule and GUITSSModule) are addressed separately
in this design with their own class diagram(s) and sequence diagrams for major operations
included in the package’s interfaces.

The design process for each package involved starting with a class diagram including interfaces
from the high level design, and filling in details to the class diagram to move toward

R1B2A Detailed Design Rev0 1-2 10/26/00

implementation. Sequence diagrams were then used to show how the functionality is to be
carried out. An iterative process was used to enhance the class diagram as sequence diagrams
identified missing classes or methods.

1.5 Design Tools
The work products contained within this design are extracted from the COOL:JEX design tool.
Within this tool, the design is contained in the CHART II project, R1B2 configuration, System
Design phase. A system version is included for each software package.

1.6 Work Products
This design contains the following work products:

• = A UML Class diagram for each package showing the low-level software objects that
will allow the system to implement the interfaces identified in the high level design.

• = UML Sequence diagrams for non-trivial operations of each interface identified in the
high level design. Additionally, sequence diagrams are included for non-trivial
methods in classes created to implement the interfaces. Operations that are considered
trivial are operations that do nothing more than return a value or a list of values and
where interaction between several classes is not involved.

R1B2A Detailed Design Rev0 2-2 10/26/00

2 Key Design Concepts
This design builds upon the “R1B2 Servers Detailed Design” and “R1B2 GUI Detailed Design”
documents. These documents should be referenced for details on the CHART II Server and GUI
frameworks and supporting packages. This section relates key design concepts included in the
R1B2 Detailed design documents to their usage in R1B2A.

2.1 Service Application Framework
The service application framework that exists in CHART II (Chart2Service) is used to host the
TSSManagementModule, providing access to common services needed by this module. This
includes service application maintenance features built into the Chart2Service that allow an
administrator to monitor services.

2.2 GUI Application Framework
The existing CHART II core GUI framework is used to host the GUITSSModule, a standard
CHART II installable GUI module. This module provides GUI support to allow users to view
and configure Transportation Sensor System devices (such as RTMS).

2.3 Access Control
The existing access control features of CHART II R1B2 apply to R1B2A. Any action that may
be performed by the user to change the state of the system requires a functional right to be
assigned to the user. The GUI disables menus that perform functions for which the user does not
have the proper functional rights. The server also blocks attempts by users to execute methods
for which they do not have rights, by throwing an AccessDenied exception. A list of specific
functional rights added for R1B2A is given in Appendix A of this document.

2.4 Operations Logging
R1B2A uses the existing CHART II operations logging routines to record actions performed by
users. Specifically, an entry will be made in the operations log when a user adds an RTMS,
removes an RTMS, changes the operations mode of an RTMS (online, offline, maintenance
mode), or changes configuration values for an RTMS. When configuration values are changed,
the old and new values are logged.

2.5 Event Channel Fault Tolerance
The TSSManagementModule and GUITSSModule both utilize existing utilities in the CHART II
system to maintain their connections to the CORBA event service. This ensures that even if a
CORBA event service application is stopped, asynchronous events will be enabled automatically
within the server and GUI when the event service is restarted.

Note, the server requires the CORBA event service to be running when it is started, however the
GUI does not have a start-up dependency on the event service.

R1B2A Detailed Design Rev0 2-3 10/26/00

2.6 Object Publication
The TSSManagementModule (like other CHART II server modules) publishes objects in the
CORBA trader to make them available to other applications, such as the CHART II GUI or the
Chartweb.TSSClient. The following object types are published in addition to the existing
published CHART II objects:

• = TransportationSensorSystem

• = RTMS (subclass of TransportationSensorSystem)

• = TransportationSensorSystemFactory

• = RTMSFactory (subclass of TransportationSensorSystemFactory)

2.7 Database Access
The R1B2A TSSManagementModule uses the existing CHART II DBConnectionManager class
to access the CHART II database to retrieve previously persisted TSS objects and to persist TSS
objects and their current state. All database access is encapsulated in the TSSManagementDB
class.

2.8 Field Communications
The R1B2A TSSManagementModule requires field communications to access RTMS devices
and obtain the current traffic parameters they have collected. The distributed CommService and
Port objects included in FMS R1B2 provide the field communications for R1B2A. A utility class
named RTMSProtocolHandler exists in R1B2A to handle the protocol required to communicate
with an RTMS device.

2.9 Error Processing
Because CHART II is a distributed object system, it is expected that any call to a remote object
could cause a CORBA exception to be thrown. All software calls to remote objects handle
CORBA exceptions and the processing is not shown on sequence diagrams within this design
except where it serves to illustrate a design point.

Furthermore, as with any system, most method calls, system calls, etc. can fail unexpectedly. All
such errors are handled by the software and are not shown explicitly in the package design
portion of this document. The default action when such an error is encountered is to reach a
consistent state within the object where the error occurred and then to throw a
CHART2Exception (even for non-CORBA calls). The CHART2Exception contains debugging
information as well as text suitable for display to a user or administrator. These exceptions are
shown on sequence diagrams to call out error conditions that are not obvious.

The Log utility class is used by modules to log error conditions to a flat file that is created by the
service application hosting the module. The log file entries contain the name of the class that
logged the entry, the date and time of the entry, and descriptive text of the error that occurred.
The Log utility also provides the capability for a stack trace to be printed to the file to

R1B2A Detailed Design Rev0 2-4 10/26/00

accompany the error. This feature is reserved for use when an error condition is caught and the
exact cause of the error condition is not known. Log files created by the Log utility class are self-
cleaning and are automatically removed from the system when they reach a certain age, as
specified in a configuration file.

2.10 Packaging
This software design is broken into packages of related classes. The table below shows each of
the packages to be added to CHART II for R1B2A along with a description of each.

Table 1 Package Descriptions

Package Name Package Description
TSSManagement This package contains code that is generated from IDL. It contains the

CORBA interfaces, structs, enums, and constants used to define the
interface between the CHART II TSS service and other applications such
as the CHART II GUI and the Chartweb.TSSClient.

TSSManagementModule This package contains a service application module that implements the
interfaces defined in the TSSManagement package.

GUITSSModule This package contains classes that allow TSS devices served by the
TSSManagementModule to be viewed and configured in the CHART II
GUI .

DeviceUtility This package exists in CHART II R1B2, however portions of it relating
to the PortLocator are shown in this document to provide a more
complete view of device communications.

CHARTWebModule This package contains classes implementing the CORBA PushConsumer
interface and is therefore a CORBA object that is connected to the ORB
and is called remotely by an EventChannel (via its PushConsumer push()
method) when data is pushed on the channel. This module connects to the
TSS status and event channels that exist in the system to allow this
module to be notified of status and configuration changes to TSS objects.

CHARTWebMapServerModule This package contains classes implementing the MapServer that will
render the CHART Web Map with the speed information from the RTMS
units

The remainder of this document contains detailed designs of each of the above packages.

R1B2A Detailed Design Rev0 3-1 10/26/00

3 Package Designs
The following sections provide detailed designs of each of the software packages added to

CHART II for R1B2A. Each section contains one or more class diagrams. Sequence diagrams
exist for non-trivial operations for a software package, except for the TSSManagement package

that serves to define the CORBA interfaces to the system.

R1B2A Detailed Design Rev0 3-2 10/26/00

3.1 TSSManagement
This section shows interfaces to the system that are defined in IDL.

3.1.1 TSSManagement (Class Diagram)

This class diagram contains the interfaces, structs, and typedefs that are to be defined in
IDL and provide the external interface to the TSSManagement package of the CHART II
system.

discriminator
equals

ObjectAdded

OpStatus
Changed

Mode
Changed

discriminator
equals

CurrentStatus

discriminator
equals

ObjectRemoved

discriminator
equals

ConfigChanged

TSSListEntry

returns TSS objects in
list using*

1

ObjectAddedEventInfo

discriminator
equals

ObjectAdded

1

1

acquires port
using

11

communicates to
field device with

1

1

TransportationSensorSystem

TransportationSensorSystemFactory

RTMSFactory

TSSConfiguration

TSSEvent

TSSEventType

TSSStatus

Identifier

* 11 1

pushes
updates
within

1

RTMS

Direction DirectionValues

PortLocationData

PortManagerCommsData

UniquelyIdentifiable GeoLocatable CommEnabled

TrafficParameters

CommunicationMode

OperationalStatus

PortManager

DataPort

11 1*

1..*

1

1

1

11

11

11

*

ZoneGroup

ZoneGroupTrafficParms

*

1

1

1*

1

1

discriminator
equals

CurrentStatus

1..*

1

discriminator
equals

ObjectRemoved

1

1

discriminator
equals

ConfigChanged

1

1

1..*

1

OpStatusChangedEventInfo

ModeChangedEventInfo

OpStatus
Changed

1

1

EVENT_CHANNEL_TSS_STATUS

EVENT_CHANNEL_TSS_DATA

Mode
Changed

1

1

1TransportationSensorSystem m_tss
TSSConfiguration m_config
TSSStatus m_status

int m_zoneGroupNum
string m_description
Direction m_direction
int[] m_zoneNumbers
int m_defaultSpeed

int m_zoneGroupNum
TrafficParameters m_trafficParms

TransportationSensorSystem m_tssRef
byte[] m_tssID

int m_speedData;
int m_volumeData;
int m_percentOccupancy;

getStatus():TSSStatus
getConfiguration(byte[] token):TSSConfiguration
setConfiguration(byte[] token, TSSConfiguration):void
remove(byte[] token);

getList():TSSListEntry[]
remove(byte[] token, byte[] id):void

createRTMS(byte[] token, TSSConfiguration):RTMS

byte[] m_id
OperationalStatus m_opStatus

byte[] m_id
CommunicationMode m_mode

string

string

byte[] m_id;
String m_name;
String m_location;
int m_dropAddress;
ZoneGroup[] m_zoneGroups;
int m_pollIntervalSecs;
CommPortConfig m_commPortCfg;
PortLocationData m_portLocData;
boolean m_debugComms;

discriminator():TSSEventType
configInfo():TSSConfiguration
statusInfo():TSSStatus
opStatusInfo():OpStatusChangedEventInfo
modeChangeInfo():ModeChangedEventInfo
objAddedInfo():ObjectAddedEventInfo
id():byte[]

ObjectAdded
ObjectRemoved
CurrentStatus
ConfigChanged
ModeChanged
OpStatusChanged

byte[] m_id;
ZoneGroupTrafficParms[] m_zoneGrpTrafficParms
CommunicationMode m_mode;
OperationalStatus m_opStatus;
long m_trafficParameterTimestamp;

Figure 1. TSSManagement (Class Diagram)

R1B2A Detailed Design Rev0 3-3 10/26/00

3.1.1.1 CommEnabled (Class)

The CommEnabled interface is implemented by objects that can be taken offline, put
online, or put in maintenance mode. These states typically apply only to field devices.
When a device is taken offline, it is no longer available for use through the system and
automated polling is halted. When put online, a device is again available for use through the
system and automated polling is enabled (if applicable). When put in maintenance mode a
device is offline except that maintenance commands to the device are allowed to help in
troubleshooting.

3.1.1.2 CommunicationMode (Class)

The CommunicationMode class enumerates the modes of operation for a device: ONLINE,
OFFLINE, and MAINT_MODE. ONLINE is used to indicate the device is available to the
operational system. OFFLINE is used to indicate the device is not available to the online
system and communications to the device have been disabled. MAINT_MODE is used to
indicate that the device is available only for maintenance / repair activities and testing.

3.1.1.3 DataPort (Class)

A DataPort is a port that allows binary data to be sent and received. Ports of this type
support a receive method that allows a chunk of all available data to be received. This
method prevents callers from having to issue many receive calls to parse a device response.
Instead, this receive call returns all available data received within the timeout parameters.
The caller can then parse the data within a local buffer. Using this mechanism, device
command and response should require only one call to send and one call to receive.

3.1.1.4 Direction (Class)

This type defines a short value that is used to indicate a direction of travel as defined in
DirectionValues.

3.1.1.5 DirectionValues (Class)

This interface contains constants for directions as defined in the TMDD.

3.1.1.6 EVENT_CHANNEL_TSS_DATA (Class)

This is a static string that contains the name of the event channel used to push events that
contain Transportation Sensor System traffic parameter data. The following
TSSEventTypes are pushed on EVENT_CHANNEL_TSS_DATA channels:

• = CurrentStatus

R1B2A Detailed Design Rev0 3-4 10/26/00

3.1.1.7 EVENT_CHANNEL_TSS_STATUS (Class)

This is a static string that contains the name of the event channel used to push events
relating to the change in a Transportation Sensor System status and/or configuration. The
following TSSEventTypes are pushed on EVENT_CHANNEL_TSS_STATUS channels:

• = ObjectAdded

• = ObjectRemoved

• = ConfigChanged

• = ModeChanged

• = OpStatusChanged

3.1.1.8 GeoLocatable (Class)

This interface is implemented by objects that can provide location information to their
users.

3.1.1.9 Identifier (Class)

Wrapper class for a CHART2 identifier byte sequence. This class will be used to add
identifiable objects to hash tables and perform subsequent lookup operations.

3.1.1.10 ModeChangedEventInfo (Class)

This struct contains information pushed with a ModeChanged event.

m_id — The ID of the TSS whose communication mode has changed.

m_mode — The new communication mode for the TSS.

3.1.1.11 ObjectAddedEventInfo (Class)

This structure contains information passed in the ObjectAdded event pushed on a TSS
status event channel. It contains the object reference that has been added along with its
configuration values and current status values.

3.1.1.12 OperationalStatus (Class)

The OperationalStatus class enumerates the types of operational status a device can have:
OK (normal mode), COMM_FAILURE (no communications to the device), or
HARDWARE_FAILURE (device is reachable but is reporting a hardware failure).

R1B2A Detailed Design Rev0 3-5 10/26/00

3.1.1.13 OpStatusChangedEventInfo (Class)

This struct contains data passed with an OpStatusChanged event.

m_id — The ID of the TSS whose operational status has changed.

m_opStatus — The new operational status for the device.

3.1.1.14 PortLocationData (Class)

This class contains configuration data that specifies the communication server(s) to use to
communicate with a device.

m_commsData — One or more objects identifying the communications server
(PortManager) to use to communicate with the device, in order of preference.

m_portType — The type of port to use to communicate with the device (ISDN modem,
POTS modem, direct, etc.)

m_portWaitTimeSecs — The maximum number of seconds to wait when attempting to
acquire a port from a port manager.

3.1.1.15 PortManager (Class)

A PortManager is an object that manages shared access to communications port resources.
The getPort method is used to request the use of a port from the PortManager. Requests for
ports specify the type of port needed, the priority of the request, and the maximum time the
requester is willing to wait if a port is not immediately available. When the port manager
returns a port, the requester has exclusive use of the port until the requester releases the port
back to the PortManager or the PortManager reclaims the port due to inactivity.

3.1.1.16 PortManagerCommsData (Class)

This class contains values that identify a port manager and the phone number to dial to
access a device from the given port manager. This class exists to allow for the phone
number used to access a device to differ based on the port manager to take into account the
physical location of the port manager within the telephone network. For example, when
dialing a device from one location the call may be long distance but when dialing from
another location the call may be local.

3.1.1.17 RTMS (Class)

The Remote Traffic Microwave Sensor (RTMS) is a detector manufactured by EIS, Inc.
capable of providing lane level volume, speed, and occupancy data for up to 8 lanes of a
roadway at a single location. This interface serves to identify TransportationSensorSystem
objects as being of the type RTMS. It also provides a placeholder for future operations that
may not apply to TSS objects in general and are instead RTMS specific.

R1B2A Detailed Design Rev0 3-6 10/26/00

3.1.1.18 RTMSFactory (Class)

Objects that implement RTMSFactory are capable of adding an RTMS to the system.

3.1.1.19 TransportationSensorSystem (Class)

A Transportation Sensor System (TSS) is a generic term used to describe a class of
technology used for detection within the transportation industry. Examples of TSS devices
range from the advanced devices, such as RTMS, to basic devices, such as single loop
detectors.

This software interface is implemented by objects that provide access to the traffic
parameters sensed by a Transportation Sensor System. Transportation Sensor Systems are
capable of providing detection for one or more detection zones. A single loop detector
would have one detection zone, while an RTMS would have eight detection zones.

3.1.1.20 TransportationSensorSystemFactory (Class)

This interface is implemented by objects that are used to create and serve
TransportationSensorSystem (TSS) Objects. All factories of TSS objects can return the list
of TSS objects which they have created and serve. Derived interfaces are used to provide
factories to create specific make, models, and types of TransportationSensorSystem objects.

3.1.1.21 TrafficParameters (Class)

This struct contains traffic parameters that are sensed and reported by a Traffic Sensor
System such as the RTMS.

m_speedData — The arithmetic mean of the speeds collected over a sample period in miles
per hour in tenths (thus 550 = 55.0 MPH). Valid values are 0 to 2550. A value of 65535 is
used to indicate a missing or invalid value (such as when the volume for the sample period
is zero).

m_volumeData — The count of vehicles for the sample period. Valid values 0 to 65535. A
value of 65535 represents a missing value.

m_percentOccupancy — The percentage of occupancy of the roadway in tenths of a
percent. (thus 1000 = 100.0 percent). Valid values are 0 to 1000. A value of 65535
represents a missing or invalid value.

R1B2A Detailed Design Rev0 3-7 10/26/00

3.1.1.22 TSSConfiguration (Class)

This class holds configuration data for a transportation sensor system (TSS) as follows:

m_id — The unique identifier for this TSS. This field is ignored when the object is passed
to the TSS to change its configuration.

m_name — The name used to identify the TSS.

m_location — A descriptive location of the TSS.

m_dropAddress — The drop address for the device.

m_zoneGroups — Logical groupings of detection zones, used to provide a single set of
traffic parameters for one or more detection zones.

m_pollIntervalSecs — The interval on which the TSS should be polled for its current traffic
parameters (in seconds).

m_commPortCfg — Communication configuration values.

m_portLocData — Configuration information that determines which port manager(s)
should be used to establish a connection with the SensorSystem.

m_debugComms — Flag used to enable/disable the logging of communications data for
this TSS. When enabled, command and response packets exchanged with the device are
logged to a debugging log file.

3.1.1.23 TSSEvent (Class)

This class is a CORBA union that contains varying data depending on the current value of
the discriminator.

If the discriminator is ConfigChanged, this union contains a TSSConfig object.

If the discriminator is ObjectAdded, this union contains an ObjectAddedEventInfo object.

If the discriminator is ObjectRemoved, this union contains a byte[] containing the unique
identifier for the Traffic Sensor System that was removed.

If the discriminator is CurrentStatus the union contains an array of one or more TSSStatus
objects.

If the discriminator is ModeChanged, the union contains a ModeChangedEventInfo.

If the discriminator is OpStatusChanged, the union contains an OpStatusChangedEventInfo
object.

R1B2A Detailed Design Rev0 3-8 10/26/00

3.1.1.24 TSSEventType (Class)

This enumeration defines the types of events that may be pushed on an event channel by a
Transportation Sensor Status object. The values in this enumeration are used as the
discriminator in the TSSEvent union.

ObjectAdded — a TransportationSensorSystem has been added to the system.

ObjectRemoved — a TransportationSensorSystem has been removed from the system.

CurrentStatus — The event contains the current status of one or more Transportation
Sensor System objects.

ConfigChanged — One or more configuration values for the Transportation Sensor System
have been changed.

ModeChanged — The communications mode of the TransportationSensorSystem has
changed.

OpStatusChanged — The operational status of the TransportationSensorSystem has
changed.

3.1.1.25 TSSListEntry (Class)

This struct is used to pass a TransporationSensorSystem object together with its ID. This
struct is provided for convenience because when discovering an object, it is usually
required to make a call to the object’s getID() method.

3.1.1.26 TSSStatus (Class)

This class holds current status information for the TSS as follows:

m_id — The ID of the TSS for which this status applies.

m_zoneGrpTrafficParms — The traffic parameters for each ZoneGroup of the
Transporation Sensor System as specified in the Sensor system’s TSSConfiguration object.

m_mode — The communication mode of the TSS.

m_opStatus — The operational status for the TSS.

m_trafficParameterTimestamp — A timestamp that records when the traffic parameter data
was collected from the device.

3.1.1.27 UniquelyIdentifiable (Class)

This interface will be implemented by all classes that are to be identifiable within the
system. The identifier must be generated by the IdentifierGenerator to ensure uniqueness.

R1B2A Detailed Design Rev0 3-9 10/26/00

3.1.1.28 ZoneGroup (Class)

This class is used to group one or more detection zones of a Transportation Sensor System
into a logical grouping. Traffic parameters for all detection zones included in the group are
averaged to provide a single set of traffic parameters for the group.

3.1.1.29 ZoneGroupTrafficParms (Class)

This struct contains traffic parameters for a ZoneGroup.

m_zoneGroupNumber — The number of the zone group for which the traffic parameters
apply.

m_trafficParms — The traffic parameter values for the zone group.

R1B2A Detailed Design Rev0 3-10 10/26/00

3.2 TSSManagementModule

3.2.1 TSSModuleClassDiagram (Class Diagram)

This class diagram shows classes in the TSSManagementModule used to allow the module
to run within the CHART II service framework and also to provide common services to
other classes within the module.

ServiceApplication

PushEventSupplier

ServiceApplicationModule

TSSManagementModule

RTMSFactoryImpl

TSSManagementDB

LogFile

Raw Data Log

2 event channels, one
for status change,
one for traffic parameter data

1

1

11

returns persisted
TSS data in

1

1

1

1

1

1

11

1 1

1

1

2

1

CommFailureDB
TSSDBData

TSSManagementProperties

addCommFailureLogEntry(CommFailureData):void

DBConnectionManager dbConnMgr
TSSConfiguration m_config
CommunicationMode m_mode
OperationalStatus m_opStatus

getRawDataFileName():String
getDebugFileDir():String
getAutoStatusPushSecs():int

start
shutdown
getORB():ORB
getPOA(string poaName):POA
getTradingRegister():CosTrading.Register
getTradingLookup():CosTrading.Lookup
getEventChannelFactory():EventChannelFactory
getDBConnectionManager():DBConnectionManager
getOperationsLog():OperationsLog
getProperties():java.util.Properties
getDefaultProperties():java.util.Properties
registerObject(obj, id, name, type, publish):void
registerEventChannel(EventChannel, name):void
withdrawObject(id):void
getIDGenerator():IdentifierGenerator

initialize(ServiceApplication app):boolean
shutdown(ServiceApplication app):boolean

RTMSFactoryImpl(ServiceApplication,
 TSSManagementProperties,
 TSSManagementDB,
 LogFile, PushEventSupplier,
 PushEventSupplier)
remove(byte[] token, byte[] idl):void

getList(int TSSType):TSSDBData
addTSS(int TSSType, TSSConfiguration config):void
removeTSS(byte[] id):void
updateCommMode(byte[] id, int commMode):void
updateOpStatus(byte[] id, int opStatus):void

static int TSSTypeRTMS = 1;

Figure 2. TSSModuleClassDiagram (Class Diagram)

3.2.1.1 CommFailureDB (Class)

This class is a utility used to log an entry in the Comm Failure log table in the database.
This table is used to log details about any comm failure that occurs in the system.

R1B2A Detailed Design Rev0 3-11 10/26/00

3.2.1.2 LogFile (Class)

This class creates a flat file for writing system trace log messages and purges them at user
specified interval. The log files created by this class are used for system debugging and
maintenance only and are not to be confused with the system operations log that is modeled
by the OperationsLog class.

3.2.1.3 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.
The user of this class can pass a reference to the event channel factory to this object. The
constructor will create a channel in the factory. The push method is used to push data on the
event channel. The push method is able to detect if the event channel or its associated
objects have crashed. When this occurs, a flag is set, causing the push method to attempt to
reconnect the next time push is called. To avoid a supplier with a heavy supply load from
causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.
This interval specifies the quickest reconnect interval that can be used. The push method
uses this interval and the current time to determine if a reconnect should be attempted, thus
reconnects can be throttled independently of a supplier’s push rate.

3.2.1.4 RTMSFactoryImpl (Class)

This class implements the RTMSFactory interface as defined in the IDL. It holds all
RTMSImpl objects that have been created within an instance of the
RTMSManagementModule and allows for the addition and removal of RTMS objects. It
also allows one to query all RTMS objects currently served from the factory.

This factory contains a timer that periodically fires, causing the RTMSFactoryImpl to
collect the current status of each RTMSImpl and push the collective status in a single
CORBA event.

3.2.1.5 ServiceApplication (Class)

This interface is implemented by objects that can provide the basic services needed by a
ChartII service application. These services include providing access to basic CORBA
objects that are needed by service applications, such as the ORB, POA, Trader, and Event
Service.

3.2.1.6 ServiceApplicationModule (Class)

This interface is implemented by modules that serve CORBA objects. Implementing classes
are notified when their host service is initialized and when it is shutdown. The
implementing class can use these notifications along with the services provided by the
invoking ServiceApplication to perform actions such as object creation and publication.

R1B2A Detailed Design Rev0 3-12 10/26/00

3.2.1.7 TSSDBData (Class)

This class holds data that is retrieved from the database during start-up for a Transportation
Sensor System object that existed in the system during a prior run of the software.

3.2.1.8 TSSManagementDB (Class)

This class is a utility that provides methods for adding, removing, and updating database
data pertaining to Transportation Sensor Systems. Because this class is designed to be
generic and work for RTMS as well as other TSS derived objects, the add method requires
a model id to be passed. This allows data for a specific model to be retrieved by model
specific factories during system initialization.

3.2.1.9 TSSManagementModule (Class)

This class is a ServiceApplicationModule used to serve an RTMSFactory object. The
RTMSFactory serves zero or more RTMS objects. By providing an implementation of the
ServiceApplicationModule interface, this class can be included in the CHART2 service
application framework, which provides common services needed to serve CORBA objects
within the CHART 2 system.

3.2.1.10 TSSManagementProperties (Class)

This class provides a wrapper to the application’s properties file that provides easy access
to the properties specific to the TSSManagementModule. These properties include the name
of the file where raw traffic parameter data is to be logged, the directory where debug log
files are to be kept, and the interval at which the status of all TSS objects is to be collected
and pushed in a CORBA event.

R1B2A Detailed Design Rev0 3-13 10/26/00

3.2.2 RTMSFactoryClassDiagram (Class Diagram)

This diagram shows the classes of the TSSManagementModule relating to the
RTMSFactoryImpl. The RTMSFactoryImpl holds RTMSImpl objects and allows RTMSs
to be added and removed from the system.

java.util.Timer

TSSCurrentStatusPushTask
TSSDBData TSSManagementProperties

TSSEvent PushEventSupplier

java.util.Vector
Stores list of
RTMS objects

RTMSFactory

RTMSFactoryImpl

TSSManagementDB

LogFile

Raw Data Log

RTMSImpl

2 event channels, one
for status change,
one for traffic parameter data

1

1

1

1

returns persisted
TSS data in1

1

1

1

11

pushes event data in1

1

1 1

1

*

1 1

1

2

schedule
cancel

run

TSSConfiguration m_config
CommunicationMode m_mode
OperationalStatus m_opStatus getRawDataFileName():String

getDebugFileDir():String
getAutoStatusPushSecs():int

createRTMS(byte[] token, TSSConfiguration):RTMS

RTMSFactoryImpl(ServiceApplication,
 TSSManagementProperties,
 TSSManagementDB,
 LogFile, PushEventSupplier,
 PushEventSupplier)
remove(byte[] token, byte[] idl):void

getList(int TSSType):TSSDBData
addTSS(int TSSType, TSSConfiguration config):void
removeTSS(byte[] id):void
updateCommMode(byte[] id, int commMode):void
updateOpStatus(byte[] id, int opStatus):void

static int TSSTypeRTMS = 1;

poll(DataPort):TSSPollResults

Figure 3. RTMSFactoryClassDiagram (Class Diagram)

3.2.2.1 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or
recurring execution.

3.2.2.2 java.util.Vector (Class)

A Vector is a growable array of objects.

R1B2A Detailed Design Rev0 3-14 10/26/00

3.2.2.3 LogFile (Class)

This class creates a flat file for writing system trace log messages and purges them at user
specified interval. The log files created by this class are used for system debugging and
maintenance only and are not to be confused with the system operations log that is modeled
by the OperationsLog class.

3.2.2.4 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.
The user of this class can pass a reference to the event channel factory to this object. The
constructor will create a channel in the factory. The push method is used to push data on the
event channel. The push method is able to detect if the event channel or its associated
objects have crashed. When this occurs, a flag is set, causing the push method to attempt to
reconnect the next time push is called. To avoid a supplier with a heavy supply load from
causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.
This interval specifies the quickest reconnect interval that can be used. The push method
uses this interval and the current time to determine if a reconnect should be attempted, thus
reconnects can be throttled independently of a supplier’s push rate.

3.2.2.5 RTMSFactory (Class)

Objects that implement RTMSFactory are capable of adding an RTMS to the system.

3.2.2.6 RTMSFactoryImpl (Class)

This class implements the RTMSFactory interface as defined in the IDL. It holds all
RTMSImpl objects that have been created within an instance of the
RTMSManagementModule and allows for the addition and removal of RTMS objects. It
also allows one to query all RTMS objects currently served from the factory.

This factory contains a timer that periodically fires, causing the RTMSFactoryImpl to
collect the current status of each RTMSImpl and push the collective status in a single
CORBA event.

3.2.2.7 RTMSImpl (Class)

This class is a derivation of the PolledTSSImpl that provides functionality for obtaining the
current traffic parameters from an RTMS device. It makes use of an RTMSProtocolHandler
to perform the device specific protocol to obtain the traffic parameters. It moves the data
from the device specific format to the generic TSSPollResults object to allow the
PolledTSSImpl to combine/average data based on zone group configuration, perform raw
data logging, and other services that are common to Transportation Sensor System objects.

R1B2A Detailed Design Rev0 3-15 10/26/00

3.2.2.8 TSSCurrentStatusPushTask (Class)

This class is a timer task that is executed on a regular interval. When this task is run, it calls
into the RTMSFactoryImpl object to have it collect the status for all RTMSImpl objects and
to push a CurrentStatus event with the collected data.

3.2.2.9 TSSDBData (Class)

This class holds data that is retrieved from the database during start-up for a Transportation
Sensor System object that existed in the system during a prior run of the software.

3.2.2.10 TSSEvent (Class)

This class is a CORBA union that contains varying data depending on the current value of
the discriminator.

If the discriminator is ConfigChanged, this union contains a TSSConfig object.

If the discriminator is ObjectAdded, this union contains an ObjectAddedEventInfo object.

If the discriminator is ObjectRemoved, this union contains a byte[] containing the unique
identifier for the Traffic Sensor System that was removed.

If the discriminator is CurrentStatus the union contains an array of one or more TSSStatus
objects.

If the discriminator is ModeChanged, the union contains a ModeChangedEventInfo.

If the discriminator is OpStatusChanged, the union contains an OpStatusChangedEventInfo
object.

3.2.2.11 TSSManagementDB (Class)

This class is a utility that provides methods for adding, removing, and updating database
data pertaining to Transportation Sensor Systems. Because this class is designed to be
generic and work for RTMS as well as other TSS derived objects, the add method requires
a model id to be passed. This allows data for a specific model to be retrieved by model
specific factories during system initialization.

3.2.2.12 TSSManagementProperties (Class)

This class provides a wrapper to the application’s properties file that provides easy access
to the properties specific to the TSSManagementModule. These properties include the name
of the file where raw traffic parameter data is to be logged, the directory where debug log
files are to be kept, and the interval at which the status of all TSS objects is to be collected
and pushed in a CORBA event.

R1B2A Detailed Design Rev0 3-16 10/26/00

3.2.3 RTMSObject (Class Diagram)

This diagram shows classes in the TSSManagementModule relating to the RTMSImpl
class. The RTMSImpl obtains most of its functionality from its base class, PolledTSSImpl.
The RTMSImpl object provides logic that allows the base class to obtain traffic parameters
from an RTMS device.

1*

1

1

*

1

1

1

11

1 1

1*

Raw Data Log

RTMSImpl

RTMS

TSSPollResults

2 event channels, one
for status change,
one for traffic parameter data

1

*

1

1

1

*

returns persisted
TSS data in1

1

1

1

pushes
event
data in

1

11

1

1

1

returns status info
using

1 1

1

1

CommFailureDB

TSSDBData

ModemPortLocator

TSSEvent

PushEventSupplier

java.util.Timer

java.util.TimerTask

TSSPollingTask
TransportationSensorSystem

PolledTSSImpl

RTMSFactoryImpl

RTMSDeviceStatus RTMSProtocolHdlr

TSSConfiguration

TSSStatus

TSSManagementDB

LogFile

Used to log debugging
information only.

LogFile

addCommFailureLogEntry(CommFailureData):void

DBConnectionManager dbConnMgr

TSSConfiguration m_config
CommunicationMode m_mode
OperationalStatus m_opStatus

schedule
cancel

run

getStatus():TSSStatus
getConfiguration(byte[] token):TSSConfiguration
setConfiguration(byte[] token, TSSConfiguration):void
remove(byte[] token);

TSSImpl(TSSConfiguration, TSSStatus, TSSManagementDB,
 TransportationSensorSystemFactoryl,
 PushEventSupplier, PortLocator)
abstract poll(DataPort):TSSPollResults
pollDevice():void
getStatus(boolean resetAvg):void

RTMSFactoryImpl(ServiceApplication,
 TSSManagementProperties,
 TSSManagementDB,
 LogFile, PushEventSupplier,
 PushEventSupplier)
remove(byte[] token, byte[] idl):void

toString()

TrafficParameters[] m_trafficParms
byte m_healthStatus
byte m_msgNum

getStatus():RTMSDeviceStatus

byte m_sensorID;
LogFile m_debugLog;

byte[] m_id;
String m_name;
String m_location;
int m_dropAddress;
ZoneGroup[] m_zoneGroups;
int m_pollIntervalSecs;
CommPortConfig m_commPortCfg;
PortLocationData m_portLocData;
boolean m_debugComms;

byte[] m_id;
ZoneGroupTrafficParms[] m_zoneGrpTrafficParms
CommunicationMode m_mode;
OperationalStatus m_opStatus;
long m_trafficParameterTimestamp;

getList(int TSSType):TSSDBData
addTSS(int TSSType, TSSConfiguration config):void
removeTSS(byte[] id):void
updateCommMode(byte[] id, int commMode):void
updateOpStatus(byte[] id, int opStatus):void

static int TSSTypeRTMS = 1;

poll(DataPort):TSSPollResultsTrafficParameters[] m_trafficParms
OperationalStatus m_opStatus

Figure 4. RTMSObject (Class Diagram)

3.2.3.1 CommFailureDB (Class)

This class is a utility used to log an entry in the Comm Failure log table in the database.
This table is used to log details about any comm failure that occurs in the system.

3.2.3.2 java.util.Timer (Class)

This class provides asynchronous execution of tasks that are scheduled for one-time or
recurring execution.

R1B2A Detailed Design Rev0 3-17 10/26/00

3.2.3.3 java.util.TimerTask (Class)

This class is an abstract base class which can be scheduled with a timer to be executed one
or more times.

3.2.3.4 LogFile (Class)

This class creates a flat file for writing system trace log messages and purges them at user
specified interval. The log files created by this class are used for system debugging and
maintenance only and are not to be confused with the system operations log that is modeled
by the OperationsLog class.

3.2.3.5 ModemPortLocator (Class)

This class provides an implementation of the PortLocator’s abstract connectPort() method
that can connect a ModemPort that has been acquired by the PortLocator base class. This
derived class logs information in the comm failure database table relating to connection
problems that may occur.

3.2.3.6 PolledTSSImpl (Class)

This object implements the Transportation Sensor System interface as defined in IDL. This
implementation provides the base functionality required for Transporation Sensor Systems
that are polled periodically to retrieve traffic parameters. The only requirement for derived
classes is to provide an implmentation of the abstract poll method, which communicates
over a previously connected Port to obtain the traffic parameters from a TSS.

This implementation periodically polls the field device using the derived class
implementation of the poll method. This implementation provides services such as raw data
logging, averaging/summation of data into configured zone groups, asynchronous
notification of configuration changes, and persistence/depersistence.

3.2.3.7 PushEventSupplier (Class)

This class provides a utility for application modules that push events on an event channel.
The user of this class can pass a reference to the event channel factory to this object. The
constructor will create a channel in the factory. The push method is used to push data on the
event channel. The push method is able to detect if the event channel or its associated
objects have crashed. When this occurs, a flag is set, causing the push method to attempt to
reconnect the next time push is called. To avoid a supplier with a heavy supply load from
causing reconnect attempts to occur too frequently, a maximum reconnect interval is used.
This interval specifies the quickest reconnect interval that can be used. The push method
uses this interval and the current time to determine if a reconnect should be attempted, thus
reconnects can be throttled independently of a supplier’s push rate.

R1B2A Detailed Design Rev0 3-18 10/26/00

3.2.3.8 RTMS (Class)

The Remote Traffic Microwave Sensor (RTMS) is a detector manufactured by EIS, Inc.
capable of providing lane level volume, speed, and occupancy data for up to eight lanes of a
roadway at a single location. This interface serves to identify TransportationSensorSystem
objects as being of the type RTMS. It also provides a placeholder for future operations that
may not apply to TSS objects in general and are instead RTMS specific.

3.2.3.9 RTMSDeviceStatus (Class)

This class is used to pass raw data retrieved from the RTMS to the caller of the
RTMSProtocolHdlr getStatus() method.

m_trafficParameters — the traffic parameters sensed by the device, such as volume, speed,
and occupancy.

m_healthStatus — The health status byte reported from the RTMS. A value other than 10,
20, 30, 40, 50, 60, or 70 indicates a hardware problem.

m_msgNum — The message number reported by the RTMS. This number is incremented
sequentially when the RTMS dumps averaged data to a retrieval area at the end of a
message period. It can be used to determine if the device is being polled too frequently or
infrequently.

3.2.3.10 RTMSFactoryImpl (Class)

This class implements the RTMSFactory interface as defined in the IDL. It holds all
RTMSImpl objects that have been created within an instance of the
RTMSManagementModule and allows for the addition and removal of RTMS objects. It
also allows one to query all RTMS objects currently served from the factory.

This factory contains a timer that periodically fires, causing the RTMSFactoryImpl to
collect the current status of each RTMSImpl and push the collective status in a single
CORBA event.

3.2.3.11 RTMSImpl (Class)

This class is a derivation of the PolledTSSImpl that provides functionality for obtaining the
current traffic parameters from an RTMS device. It makes use of an RTMSProtocolHandler
to perform the device specific protocol to obtain the traffic parameters. It moves the data
from the device specific format to the generic TSSPollResults object to allow the
PolledTSSImpl to combine/average data based on zone group configuration, perform raw
data logging, and other services that are common to Transportation Sensor System objects.

R1B2A Detailed Design Rev0 3-19 10/26/00

3.2.3.12 RTMSProtocolHdlr (Class)

This class is a utility that encapsulates the communication protocol of the RTMS device. It
provides a high level method to get the status as an object. It formats a command and sends
it to the device and receives and interprets the response from the device, passing the data
back to the caller in the form of an RTMSDeviceStatus object.

3.2.3.13 TransportationSensorSystem (Class)

A Transportation Sensor System (TSS) is a generic term used to describe a class of
technology used for detection within the transportation industry. Examples of TSS devices
range from the advanced devices, such as RTMS, to basic devices, such as single loop
detectors.

This software interface is implemented by objects that provide access to the traffic
parameters sensed by a Transportation Sensor System. Transportation Sensor Systems are
capable of providing detection for one or more detection zones. A single loop detector
would have one detection zone, while an RTMS would have 8 detection zones.

3.2.3.14 TSSConfiguration (Class)

This class holds configuration data for a transportation sensor system (TSS) as follows:

m_id — The unique identifier for this TSS. This field is ignored when the object is passed
to the TSS to change its configuration.

m_name — The name used to identify the TSS.

m_location — A descriptive location of the TSS.

m_dropAddress — The drop address for the device.

m_zoneGroups — Logical groupings of detection zones, used to provide a single set of
traffic parameters for one or more detection zones.

m_pollIntervalSecs — The interval on which the TSS should be polled for its current traffic
parameters (in seconds).

m_commPortCfg — Communication configuration values.

m_portLocData — Configuration information that determines which port manager(s)
should be used to establish a connection with the SensorSystem.

m_debugComms — Flag used to enable/disable the logging of communications data for
this TSS. When enabled, command and response packets exchanged with the device are
logged to a debugging log file.

R1B2A Detailed Design Rev0 3-20 10/26/00

3.2.3.15 TSSDBData (Class)

This class holds data that is retrieved from the database during start-up for a Transportation
Sensor System object that existed in the system during a prior run of the software.

3.2.3.16 TSSEvent (Class)

This class is a CORBA union that contains varying data depending on the current value of
the discriminator.

If the discriminator is ConfigChanged, this union contains a TSSConfig object.

If the discriminator is ObjectAdded, this union contains an ObjectAddedEventInfo object.

If the discriminator is ObjectRemoved, this union contains a byte[] containing the unique
identifier for the Traffic Sensor System that was removed.

If the discriminator is CurrentStatus the union contains an array of one or more TSSStatus
objects.

If the discriminator is ModeChanged, the union contains a ModeChangedEventInfo.

If the discriminator is OpStatusChanged, the union contains an OpStatusChangedEventInfo
object.

3.2.3.17 TSSManagementDB (Class)

This class is a utility that provides methods for adding, removing, and updating database
data pertaining to Transportation Sensor Systems. Because this class is designed to be
generic and work for RTMS as well as other TSS derived objects, the add method requires
a model id to be passed. This allows data for a specific model to be retrieved by model
specific factories during system initialization.

3.2.3.18 TSSPollingTask (Class)

This class is a TimerTask that is used by an RTMS to schedule its asynchronous polling
with a Timer object.

R1B2A Detailed Design Rev0 3-21 10/26/00

3.2.3.19 TSSPollResults (Class)

This class is a data holder used to pass the results of device polling from the PolledTSSImpl
derived class back to the base class for processing. The traffic parameter data passed is lane
(detection zone) level. The operational status is the status as determined by the derived
class.

m_trafficParms — An array of traffic parameters for the current poll cycle, with one array
entry for each detection zone of the device.

m_opStatus — The operational status as determined by the derived class.

3.2.3.20 TSSStatus (Class)

This class holds current status information for a TSS as follows:

m_id — The ID of the TSS for which this status applies.

m_zoneGrpTrafficParms — The traffic parameters for each ZoneGroup of the
Transporation Sensor System as specified in the Sensor system’s TSSConfiguration object.

m_mode — The communication mode of the TSS.

m_opStatus — The operational status for the TSS.

m_trafficParameterTimestamp — A timestamp that records when the traffic parameter data
was collected from the device.

R1B2A Detailed Design Rev0 3-22 10/26/00

3.2.4 Sequence Diagrams

3.2.4.1 PolledTSSImpl:putInMaintenanceMode (Sequence Diagram)

A user with the proper functional rights can put a Transportation Sensor System in
maintenance mode if it is not already in maintenance mode. The communication mode
stored in the TSSStatus object is updated to indicate maintenance mode. If a polling timer
does not already exist, it is created and the TSSPollingTask is scheduled for the configured
polling interval. A CORBA event is pushed on the Status event channel to notify others of
the change. An entry is made in the operations log to record that the user has performed this
action.

Administrator
PolledTSSImpl TSSStatus OperationsLog

PushEventSupplier
(status channel)

putInMaintenanceMode

[not authorized]
AccessDenied

[already in maint mode]

[new timer was created]
schedule

CommandStatus

[not authorized]
completed

[already in maint mode]
completed

completed

m_mode = MAINT_MODE

log

push (ModeChanged)

java.util.Timer

TSSPollingTask

[m_timer == null]
create

[new timer was created]
create

Figure 5. PolledTSSImpl:putInMaintenanceMode (Sequence Diagram)

R1B2A Detailed Design Rev0 3-23 10/26/00

3.2.4.2 PolledTSSImpl:putOnline (Sequence Diagram)

A user with the proper functional rights can put a Transportation Sensor System online if it
is not already online. The communication mode stored in the TSSStatus object is updated to
indicate the sensor is online. If a polling timer does not already exist, it is created and the
TSSPollingTask is scheduled for the configured polling interval. A CORBA event is
pushed on the Status event channel to notify others of the change. An entry is made in the
operations log to record that the user has performed this action.

Administrator
PolledTSSImpl TSSStatus OperationsLog

PushEventSupplier
(status channel)

java.util.Timer

TSSPollingTask

putOnline

[not authorized]
AccessDenied

[mode already online]

CommandStatus

[not authorized]
completed

[mode already online]
completed

completed

push (ModeChanged)

[m_timer == null]
create

[new timer was created]
create

[new timer was created]
schedule

m_mode = ONLINE

log

Figure 6. PolledTSSImpl:putOnline (Sequence Diagram)

R1B2A Detailed Design Rev0 3-24 10/26/00

3.2.4.3 PolledTSSImpl:setConfiguration (Sequence Diagram)

A user with the proper functional rights can change the configuration of a Transportation
Sensor System. The previous configuration values are used to detect values that have been
changed. If the Port location data has been changed, a new PortLocator object is created
with the new values. If the polling interval has been changed and the device is not offline,
the existing polling timer is cancelled and destroyed, a new timer is created, and a new
polling task is scheduled. If any values were changed, an entry is made in the operations log
to record the values that the user has changed. A CORBA event is pushed on the Status
event channel to provide notification of the configuration change to other applications.

[at least one config value changed]
push (ConfigChanged)

Administrator

PolledTSSImpl java.util.Timer OperationsLog

PortLocator

If port location data
changed, create new
PortLocator and replace
the old one.

java.util.Timer

TSSPollingTask

Tasks cannot be
removed from a
Timer, so we just
create a new one.

setConfiguration
[not authorized]
AccessDenied

[PortLocation data changed]
create

[poll interval seconds changed and NOT offline]
cancel

[poll interval seconds changed AND NOT offline]
delete

[poll interval seconds changed AND NOT offline]
create

[poll interval seconds changed AND NOT offline]
create

[poll interval seconds changed AND NOT offline]
schedule

[at least one config value changed]
logList (configuration changed by user, enumerating items changed)

PushEventSupplier
(status channel)

Figure 7. PolledTSSImpl:setConfiguration (Sequence Diagram)

R1B2A Detailed Design Rev0 3-25 10/26/00

3.2.4.4 PolledTSSImpl:takeOffline (Sequence Diagram)

A user with the proper functional rights can take a Transportation Sensor System offline
from the system if it is not already offline. The communication mode stored in the
TSSStatus object is updated to indicate the sensor is offline. The timer used to periodically
invoke the polling process is cancelled and a CORBA event is pushed on the Status event
channel to notify others of the change. An entry is made in the operations log to record that
the user has performed this action.

java.util.Timer

Polling Timer
is cancelled.

cancel

m_timer = null

CommandStatus

[not authorized]
completed

[mode already offline]
completed

completed

Administrator
PolledTSSImpl TSSStatus OperationsLog

PushEventSupplier
(status channel)

takeOffline

[not authorized]
AccessDenied

[mode already offline]

m_mode = OFFLINE

log

push (ModeChanged)

Figure 8. PolledTSSImpl:takeOffline (Sequence Diagram)

R1B2A Detailed Design Rev0 3-26 10/26/00

3.2.4.5 RTMSFactoryImpl:constructor (Sequence Diagram)

When the RTMSFactoryImpl is constructed, it obtains persisted data for each previously
existing RTMS from the database and constructs RTMSImpl objects using this data. Each
object is connected to the ORB and registered in the CORBA trading service. The factory
creates a timer that is used to cause it to periodically collect the status of all RTMS objects
and push the data as a CORBA event.

create

ServiceApplication ORB

java.util.Vector

See RTMSImpl:constructor
for details on construction.

create

getList (TSSTypeRTMS)

TSSDBData[]

[*for each TSSDBData]

create

getORB

activate_object

registerObject

create

add

TSSManagementDB

RTMSImpl

TSSManagementModule

RTMSFactoryImpl

java.util.Timer

TSSCurrentStatusPushTask

create

schedule

Figure 9. RTMSFactoryImpl:constructor (Sequence Diagram)

R1B2A Detailed Design Rev0 3-27 10/26/00

3.2.4.6 RTMSFactoryImpl:createRTMS (Sequence Diagram)

A user with the proper functional rights can add an RTMS to the system. The
RTMSFactoryImpl is called with configuration data for the RTMS to be added. The
RTMSFactoryImpl adds the configuration data to the database, using status information
indicating the device is offline and OK. An RTMSImpl object is created using this same
data and the object is added to the list of RTMSImpl objects managed by the factory. The
new RTMSImpl object is connected to the ORB and published in the CORBA Trading
Service. A CORBA event is pushed to allow other applications to be notified of the
existence of the RTMS object.

PushEventSupplier

(status)

push (ObjectAdded)

ORB

createRTMS

addTSS

[not authorized]
AccessDenied

create

activate_object

add

registerObject

RTMSImpl

ServiceApplication

Administrator

RTMSFactoryImpl java.util.VectorTSSManagementDB

Figure 10. RTMSFactoryImpl:createRTMS (Sequence Diagram)

R1B2A Detailed Design Rev0 3-28 10/26/00

3.2.4.7 RTMSFactoryImpl:CurrentStatusPush (Sequence Diagram)

The RTMSFactoryImpl contains a timer used to periodically push the current status of all
sensors managed by the factory. The factory retrieves the status of each RTMS and bundles
all status into a single CORBA event. This event is pushed on the Data event channel.

add

toArray

push (CurrentStatus)

java.util.Timer
TSSCurrentStatusPushTask VectorRTMSFactory

Vector

Vector to hold
status objects
for all RTMS objects.

TSSImpl
PushEventSupplier

(Data Channel)

run

pushCurrentStatus

toArray

[*for each RTMSImpl

create

getStatus

Figure 11. RTMSFactoryImpl:CurrentStatusPush (Sequence Diagram)

R1B2A Detailed Design Rev0 3-29 10/26/00

3.2.4.8 RTMSFactoryImpl:remove (Sequence Diagram)

A user with the proper functional rights can remove an RTMS from the system. The
RTMSFactory withdraws the object from the CORBA trading service, disconnects the
object from the ORB, removes the object’s persisted data from the database, and finally
removes the object from the factory’s list of RTMS objects. A CORBA event is pushed to
notify other applications of the object’s removal.

Note that this diagram shows an object being removed through a direct call to the
RTMSFactoryImpl. RTMS objects can also be removed using the remove method of the
RTMS object. When this occurs, the RTMS object simply delegates the call to its factory
and the processing occurs as if the factory was called directly.

shutdown

push (ObjectRemoved)

RTMSImpl

Administrator

RTMSFactoryImpl Vector ORBServiceApplication TSSManagementDB

remove

[not authorized]
AccessDenied

withdrawObject

removeTSS

remove

deactivate_object

PushEventSupplier
(status)

Figure 12. RTMSFactoryImpl:remove (Sequence Diagram)

R1B2A Detailed Design Rev0 3-30 10/26/00

3.2.4.9 RTMSImpl:constructor (Sequence Diagram)

This diagram shows the construction of the RTMSImpl object. The RTMSImpl invokes the
base class constructor, allowing it to construct a PortLocator, LogFile (for debugging), and
a polling timer (if the status passed to the constructor does not indicate the device is
offline). After the base class is constructed, the RTMSImpl constructs an
RTMSProtocolHandler to be used to perform the RTMS specific protocol to obtain traffic
parameters from the RTMS device.

RTMSFactoryImpl

RTMSImpl

PolledTSSImpl

RTMSProtocolHdlr

PortLocator

LogFile

[NOT offline]
schedule

create

java.util.Timer

TSSPollingTask

create

super

create

create

[NOT offline]
create

[NOT offline]
create

Figure 13. RTMSImpl:constructor (Sequence Diagram)

R1B2A Detailed Design Rev0 3-31 10/26/00

3.2.4.10 RTMSImpl:poll (Sequence Diagram)

The poll method of the RTMSImpl is called from its base class when it is time to poll the
RTMS device. At the point when this method is called, the base class has already
established a connection with the device. The RTMSImpl uses the RTMSProtocolHandler
to send a data request to the device and parse the device response. Any communication
failure, such as a non-responsive device, causes the base class to be notified that a
communication failure occurred. If a communication failure did not occur, the RTMS
health status is checked for an indication of a hardware failure. If no hardware failure exists,
the lane level data is passed back to the base class to process the data.

R1B2A Detailed Design Rev0 3-32 10/26/00

PolledTSSImpl
RTMSImpl

virtual call to derived
class impl.

RTMSProtocolHdlr DataPort

TSSPollResults

LogFile
(Debugging)

RTMSDeviceStatus

The remainder of this sequence is only carried out if a valid response was received from the RTMS device.

poll

getStatus

send(RTMS Data Request)

receive

byte[]

[no response, checksum error, or
invalid packet]
CommFailure

create

[CommFailure]
m_opStatus

= COMM_FAILURE

[CommFailure]
TSSPollResults

[debug mode]
log (packet being sent)

[debug mode]
log (packet received)

create

RTMSDeviceStatus

[RTMSDeviceStatus.m_healthStatus
!= 10, 20, 30, 40, 50, 60, or 70]

m_opStatus = HARDWARE_FAILURE

[*for each TrafficParameters
object in RTMSDeviceStatus]

[debug mode]
log (RTMSDeviceStatus.toString())

[HARDWARE_FAILURE]
TSSPollResults

m_trafficParms[i] =
RTMSDeviceStatus.m_trafficParms[i]

TSSPollResults

Figure 14. RTMSImpl:poll (Sequence Diagram)

R1B2A Detailed Design Rev0 3-33 10/26/00

3.2.4.11 RTMSImpl:remove (Sequence Diagram)

A user with the proper functional rights can remove an RTMS from the system. When this
is done through a call to the RTMS object, the RTMS delegates the call to the RTMS
Factory. See the RTMSFactoryImpl:remove sequence for details.

Administrator
RTMSImpl RTMSFactoryImpl

See RTMSFactoryImpl:remove
for details.

remove

[not authorized]
AccessDenied

remove

Figure 15. RTMSImpl:remove (Sequence Diagram)

R1B2A Detailed Design Rev0 3-34 10/26/00

3.2.4.12 TSSManagementModule:initialize (Sequence Diagram)

The TSSManagementModule is initialized by the ServiceApplication framework when the
Chart2Service configured to contain the TSSManagementModule is started. The
TSSManagementModule first ensures that the proper offer types have been registered in the
Trader for the types of objects this module will serve. It creates a wrapper to the service’s
properties object that provides easy access to properties that are specific to this module. A
TSSManagementDB object is created to provide access to Transportation Sensor System
data that is stored in the database. Two PushEventSupplier objects are created to provide
access to two separate CORBA event channels. One event channel is used to push events
relating to configuration and operational status of RTMS objects. The other channel is used
to periodically push traffic parameter data to interested parties. A LogFile object is created
to provide access to a raw data log file, used to log lane level data to a flat file. Finally, the
RTMSFactoryImpl object is created, connected to the ORB, and registered in the CORBA
Trading Service.

Two event
channels are
used. One for
status changes,
one for traffic
parameter data

[*for i = 0; i < 2; i++]

Service
Application

TSSManagementModule

ServiceApplication

TSSManagementProperties

TSSManagementDB

PushEventSupplier

LogFile

RTMSFactoryImpl

See RTMSFactory:constructor
for details on RTMSFactoryImpl
construction.

ORB CorbaUtilities

Specify parent of RTMSFactory as
TransportationSensorSystemFactory

Specify parent for RTMS
as TransportationSensorSystem.

create

getProperties

getDefaultProperties

create

getDBConnectionMgr

create

getEventChannelFactory

create

create

create

activate_object

registerObject

registerEventChannel

getTradingRegister

addTypeToTraderRepos(TransportationSensorSystemFactory)

addTypeToTraderRepos(RTMSFactory)

addTypeToTraderRepos(TransportationSensorSystem)

addTypeToTraderRepos(RTMS)

Figure 16. TSSManagementModule:initialize (Sequence Diagram)

R1B2A Detailed Design Rev0 3-35 10/26/00

3.2.4.13 TSSManagementModule:shutdown (Sequence Diagram)

The TSSManagementModule is shutdown when the Chart2Service that contains the module
is shut down. The TSSManagementModule disconnects the RTMSFactory from the ORB
and then tells it to shut down. The RTMSFactoryImpl tells each RTMSImpl object to shut
down and it disconnects the object from the ORB. When an RTMSImpl object is shut
down, it cancels its polling timer (if any).

java.util.Timer
(RTMS Polling

timer)

shutdown

ServiceApplication
TSSManagementModule

shutdown

[*for each RTMSImpl]

toArray

deactivate_object

clear

shutdown [timer NOT null]
cancel

deactivate_object (RTMSFactoryImpl)

Vector RTMSImpl ORBRTMSFactoryImpl

Figure 17. TSSManagementModule:shutdown (Sequence Diagram)

R1B2A Detailed Design Rev0 3-36 10/26/00

3.2.4.14 TSSPollingTask:run (Sequence Diagram)

A PolledTSSImpl object is polled on a regular interval specified in its TSSConfiguration
object. When polled, the PolledTSSImpl returns immediately if it is offline. Otherwise, it
establishes a connection with the field device using communications parameters specified
in the TSSConfiguration. The PolledTSSImpl then calls its abstract poll method that is
implemented by the derived class (RTMSImpl). Any changes to the operational status
detected during polling of the device are pushed on the CORBA event channel used for
status. Raw data obtained from the device is logged in the Raw Data log file. The lane level
data provided by the derived class is combined according to the zone groups that have been
configured in the TSSConfiguration. The speed for each lane (detection zone) included in a
zone group is averaged to provide a single value for the zone group. If a lane does not have
any volume (and thus no speed), the speed obtained the last time the lane had a volume is
used. The volume across all detection zones in the zone group is summed, and the
occupancy for all detection zones in the zone group is averaged (including detection zones
reporting zero occupancy). The current speed for each detection zone with a non-zero
volume is stored off for use when a zero occupancy occurs.

R1B2A Detailed Design Rev0 3-37 10/26/00

PushEventSupplier
(maint data)PortLocator

getConnectedPort

ConnectedPortInfo

releasePort

This task was scheduled
during the construction of the PolledTSSImpl.
The run method of the task is called on the
polling interval set in the TSSConfiguration.

RTMSImpl

Virtual method
call to derived
class impl.
See RTMSImpl:poll
sequence for details

TSSStatus TSSManagementDB
PushEventSupplier

(status)
PushEventSupplier

(online data)

run
pollDevice

[failed to connect]

poll

TSSPollResults

[op status differs]
m_opStatus = TSSPollResults.m_opStatus

synchronized

[TSSStatus.m_mode
is OFFLINE]

[Op Status is NOT OK]

m_trafficParameterTimestamp = now

[TSSPollResults.m_opStatus != TSSStatus.m_opStatus]
updateOpStatus

[op status differs]
push (OpStatusChanged)

[failed to connect]
m_opStatus = COMM_FAILED

[failed to connect AND opStatus changed]
updateOpStatus

[failed to connect AND opStatus changed]
push (OpStatusChanged)

If speed is not available
because volume is null,
use the last speed obtained
for the detection zone.

[*for each detection
zone in zone group]

average the speed

sum the volume

LogFile
(Raw Data)

[op status is OK and ONLINE mode]
log

[offline]

[offline]

average the occupancy

[speed obtained for detection zone]
store speed as last speed for zone

[*for each zone group]

end synchronization

java.util.Timer
TSSPollingTask PolledTSSImpl

Figure 18. TSSPollingTask:run (Sequence Diagram)

R1B2A Detailed Design Rev0 3-38 10/26/00

3.3 GUITSSModule

3.3.1 GUITSSModuleClasses (Class Diagram)

TSSStatus

1

1

1

1

1

1

1

GUITSSModuleEventHandler

java.lang.Runnable

1

1

*

1

creates

*1
updates

NavClassFilter Menuable

GUITSSGroup
1

1

1

TransportationSensorSystem

11

EventConsumerGroup

1

1

GUIRTMS RTMSFactory
*1creates RTMS

using
*

GUITSSModelSupporter

GUIRTMSModelSupporter

1

DefaultJFrame java.awt.event.ActionListener

*
1

1

1

*1

NavListDisplayable

DataModel

1

1

stores objects in

*1
holds

1

1

edits

TSSGeneralProperties

TSSConfigProperties

TSSConfiguration

TSSFieldCommsProperties

1

holds

GUITSSProperties
11

GUITSSModule

InstallableModule

CosEvent.PushConsumer

GUI

GUITSS

1

Menuable

java.awt.event.ActionListener

Modifies current config using

processes events using

byte[] m_id;
ZoneGroupTrafficParms[] m_zoneGrpTrafficParms
CommunicationMode m_mode;
OperationalStatus m_opStatus;
long m_trafficParameterTimestamp;

GUITSSModuleEventHandler(
 GUITSSModule,
 org.omg.CORBA.Any):GUITSSModuleEventHandler
run():void

-m_eventData:org.omg.CORBA.Any
-m_module:GUITSSModule

createNewTSS(TSSConfiguration):GUITSS
createTSSWrapper(TransportationSensorSystem,TSSConfiguration, TSSStatus):GUITSS
crreateTSSWrapper(TransportationSensorSystem):GUITSS
getTSSCreationMenuReps(token): MenuItemRep[]

getStatus():TSSStatus
getConfiguration(byte[] token):TSSConfiguration
setConfiguration(byte[] token, TSSConfiguration):void
remove(byte[] token);

TSSGeneralProperties(id, name, location)
getID()
getName()
getLocation()
-cleanupResources()

JButton m_okButton
JButton m_cancelButton

cleanupResources()
getConfigData()

byte[] m_id;
String m_name;
String m_location;
int m_dropAddress;
ZoneGroup[] m_zoneGroups;
int m_pollIntervalSecs;
CommPortConfig m_commPortCfg;
PortLocationData m_portLocData;
boolean m_debugComms;

cleanupResources()
getFieldCommsData()

GUITSSProperties(GUITSS)
showError(string, Color)

get()
addModelSupporter(GUITSSModelSupporter)
removeModelSupporter(GUITSSModelSupporter)
getModelSupporters():GUITSSModelSupporter[]
handleCORBAEvent(Any eventData):void

doProperties():void
putOnline():void
takeOffline():void
putInMaintMode():void
abstract setConfiguration(TSSConfiguration):void
updateCache(TSSConfiguration):void
updateCache(OperationalStatus):void
updateCache(CommunicationMode):void
updateCache(TSSStatus):void

-m_tss:TransportationSensorSystem
-m_config:TSSConfiguration
-m_status:TSSStatus
-m_lastUpdateTime:Date
-m_swCommFailed:boolean

-createTSS()

GUIRTMS(RTMS):GUIRTMS
GUIRTMS(RTMS):GUIRTMS
GUIRTMS(RTMS, TSSConfiguration, TSSStatus):GUIRTMS
setConfiguration(TSSConfiguration):void

createRTMS(byte[] token, TSSConfiguration):RTMS

Figure 19. GUITSSModuleClasses (Class Diagram)

3.3.1.1 CosEvent.PushConsumer (Class)

The PushConsumer interface is the interface to an event channel that a supplier of
information uses to push event updates to consumers who have previously attached to the
channel.

R1B2A Detailed Design Rev0 3-39 10/26/00

3.3.1.2 DataModel (Class)

The data model class serves as a collection of objects. It provides an efficient lookup
mechanism for locating any object, and methods that allow for the retrieval of all objects of
a particular type. Additionally, this class provides the ability to attach observer objects that
are notified when objects are added to or removed from the model. Objects may also notify
the DataModel that they have been modified. The model will periodically notify all
attached observers of the changes to objects in the model.

3.3.1.3 DefaultJFrame (Class)

This class provides a default implementation of the WindowManageable interface, and may
be used as a base class for other frame windows in the GUI. It handles all interactions with
the WindowManager for attaching and detaching, as well as saving the window position.

3.3.1.4 EventConsumerGroup (Class)

This class represents a collection of event consumers, which will be monitored to verify
that they do not lose their connection to the CORBA event service. The class will
periodically ask each consumer to verify its connection to the event channel on which it is
dependant to receive events.

3.3.1.5 GUI (Class)

This class is a singleton that contains all of the centralized functionality in the GUI. This
includes startup, shutdown, login, and logout. It manages the installable modules and
controls all functionality, which requires the modules to be called. In addition, it stores all
of the CORBA object wrappers in the DataModel, which allows access to the objects and
supports an update mechanism to notify interested observers whenever the objects change.

3.3.1.6 GUIRTMS (Class)

This class is a GUITSS subclass that contains code that is specific to the RTMS. This class
can be constructed in one of three ways. The default constructor creates an empty wrapper
object, to be used during the addition of an RTMS to the system. A second constructor
exists that takes the object reference to be wrapped as a parameter. This method is used
during discovery and must use the object reference to obtain the current configuration and
status information from the object being wrapped. The third constructor, used to process an
ObjectAdded event, constructs the wrapper with configuration and status data that is
already known (because it is pushed in the ObjectAdded event).

This class implements the abstract setConfiguration() method defined in its base class. The
implementation behaves differently based on whether the wrapper is currently empty. If the
wrapper is not empty, the method serves to change the configuration on an existing RTMS
object. If the wrapper is not empty, the method serves to create a new RTMS object using
the given configuration.

R1B2A Detailed Design Rev0 3-40 10/26/00

3.3.1.7 GUIRTMSModelSupporter (Class)

This class is an implementation of GUITSSModelSupporter that provides support for
RTMS devices. This class can provide a menu item for the TSS folder’s context menu to
allow the user to add an RTMS object to the system. This class can also create a GUI
wrapper for an existing RTMS or create an empty wrapper for an RTMS that is in the
process of being added to the system.

3.3.1.8 GUITSS (Class)

This class is a wrapper object for a TransportationSensorSystem object that exists within
the CHART II system (on the server). This object serves to cache configuration and status
data for the wrapped object to eliminate the need for most CORBA calls to the wrapped
object. This object obtains initial values for the configuration and status during the GUI
object discovery or through an ObjectAdded event pushed on a CORBA event channel.
After the initial configuration and status is obtained, this object keeps its cached data
current through calls to the updateCache methods, which are called by the GUITSSModule
as it receives asynchronous CORBA events pushed from the server when configuration or
status changes.

Although this class contains common processing that can be used for any
TransportationSensorSystem, it is abstract and must be subclassed to provide an
implementation of the setConfiguration method. The setConfiguration method is called
when the configuration values for a TSS are being changed by the user or when the
configuration values have been entered for the first time to add a TSS to the system. In the
former case, the derived class must simply pass the changed configuration to the wrapped
object’s setConfiguration method. In the latter case, however, the derived class must seek
out a factory capable of creating the specific type of TSS being added and have the factory
add the TSS to the system.

3.3.1.9 GUITSSGroup (Class)

This object is the root TSS folder that appears in the navigator tree. This object inherits
much of its functionality from the NavClassFilter class, but provides custom
implementations of the getSSMenuItemReps method (which is used to construct a context
menu for the TSS folder) and the getAllNavProperties method, which is used to determine
the columns to display in the navigator when the user selects the TSS foler in the navigator
tree. This class is also an ActionListener. Its actionPerformed method is called when the
user selects any of the menu items contained in the TSS folder’s pop-up menu.

R1B2A Detailed Design Rev0 3-41 10/26/00

3.3.1.10 GUITSSModelSupporter (Class)

This interface is implemented by classes that can provide model specific services, such as
creating a new Transportation Sensor System GUI wrapper.

The createNewTSS method is called when a TSS object is in the process of being added to
the system. The implementing class creates an empty GUITSS derived object and passes
the object back to the caller.

The createTSSWrapper method is called when a TSS that exists in the system has been
discovered, either via object discovery or through notification of an ObjectAdded via an
event channel. The implementing class caches the current configuration and status, using
the parameters passed or by going to the wrapped object and retrieving the data.

The getTSSCreationMenuReps method is used to allow the implementing class to add a
“create” menu item(s) for the type(s) of TSS the implementing class supports. An example
of such a menu item would be one with text “Add RTMS”, which would be added by the
GUIRTMSModelSupporter.

3.3.1.11 GUITSSModule (Class)

This class is an installable GUI module that provides GUI support for the display and
configuration of Transportation Sensor System (TSS) devices. It is responsible for ensuring
the TSS root appears in the navigator tree as well as any filters that are created as children
of the TSS root. It implements the CORBA PushConsumer interface and is therefore a
CORBA object that is connected to the ORB and is called remotely by an EventChannel
(via its PushConsumer push() method) when data is pushed on the channel. This module
connects to the TSS status channels that exist in the system to allow this module to be
notified of status and configuration changes to TSS objects. (Note the TSS status channel
does not push traffic parameters that have been read from the device).

3.3.1.12 GUITSSModuleEventHandler (Class)

This class is used to cause the GUITSSModule to process CORBA events to be processed
on the main GUI thread to ensure a consistent state for GUI wrapper objects. This object is
constructed holding the event data that was received and a reference to the GUITSSModule.
It is then passed to the SwingUtilities to be invoked asynchonously on the main GUI thread.
When invoked, this object calls the handleCORBAEvent method in the GUITSSModule.

3.3.1.12.1 java.lang.Runnable (Class)

This interface allows the run method to be called from another thread using Java’s
threading mechanism.

R1B2A Detailed Design Rev0 3-42 10/26/00

3.3.1.13 GUITSSProperties (Class)

This class is the window that is shown when the user clicks on a GUITSS object’s
Properties menu or when the user is adding a TSS to the system. This window contains a
tabbed pane used to show the TSS configuration values grouped into logical categories on
separate tabs. The TSSGeneralProperties, TSSConfigProperties, and
TSSFieldCommsProperties are all windows that appear on this window’s tabbed pane and
contain various GUI controls to allow the configuration values of a TSS to be viewed
and/or changed.

3.3.1.14 InstallableModule (Class)

This class is the basic interface that all installable modules must implement. It contains
functionality that all modules must support to be installable modules. This includes
functionality for startup, shutdown, login, logout, and the handling of system and user
preferences.

3.3.1.15 java.awt.event.ActionListener (Class)

This interface listens for actions such as when a menu item or button is clicked. For menu
items, it is attached to menu items when the menu is built.

3.3.1.16 Menuable (Class)

This interface allows an object to provide menu item strings and receive commands when
the corresponding menu items are clicked on. It supports both single selection and multiple
selection of Menuable objects. The getSSMenuItems() method should return the menu
items to display if the object is singly selected. The getMSMenuItems() method should
return the menu items that the Menuable object wishes to display if other Menuable objects
are selected. The access token is passed to these methods to allow the Menuable object to
check the user’s access rights before supplying the strings, so the user’s actions may be
restricted.

3.3.1.17 NavClassFilter (Class)

This filter ignores all objects that are not assignable to a given class or interface. Thus, an
interface or base class can be specified and all of the objects implementing the interface or
extending the base class will be included.

3.3.1.18 NavListDisplayable (Class)

This interface must be implemented by any object to be displayed on the right hand side of
the Navigator window, in the list view. In addition to the Navigable methods, it must also
support getting and comparing the strings for a given property (column) in the list.

R1B2A Detailed Design Rev0 3-43 10/26/00

3.3.1.19 RTMSFactory (Class)

Objects which implement RTMSFactory are capable of adding an RTMS to the system.

3.3.1.20 TransportationSensorSystem (Class)

A Transportation Sensor System (TSS) is a generic term used to describe a class of
technology used for detection within the transportation industry. Examples of TSS devices
range from the advanced devices, such as RTMS, to basic devices, such as single loop
detectors.

This software interface is implemented by objects that provide access to the traffic
parameters sensed by a Transportation Sensor System. Transportation Sensor Systems are
capable of providing detection for one or more detection zones. A single loop detector
would have one detection zone, while an RTMS would have eight detection zones.

3.3.1.21 TSSConfigProperties (Class)

This class is a window that allows the configuration of zone groups for a TSS to be
specified / changed. Zone groups can be added, removed, or modified. Each zone group can
be configured to have an optional description, a direction, and one or more detection zone
numbers.

R1B2A Detailed Design Rev0 3-44 10/26/00

3.3.1.22 TSSConfiguration (Class)

This class holds configuration data for a transportation sensor system (TSS) as follows:

m_id — The unique identifier for this TSS. This field is ignored when the object is passed
to the TSS to change its configuration.

m_name — The name used to identify the TSS.

m_location — A descriptive location of the TSS.

m_dropAddress — The drop address for the device.

m_zoneGroups — Logical groupings of detection zones, used to provide a single set of
traffic parameters for one or more detection zones.

m_pollIntervalSecs — The interval on which the TSS should be polled for its current traffic
parameters (in seconds).

m_commPortCfg — Communication configuration values.

m_portLocData — Configuration information that determines which port manager(s)
should be used to establish a connection with the SensorSystem.

m_debugComms — Flag used to enable/disable the logging of communications data for
this TSS. When enabled, command and response packets exchanged with the device are
logged to a debugging log file.

3.3.1.23 TSSFieldCommsProperties (Class)

This class is a window that allows communication related configuration values to be set.
This includes the drop address for the device, the polling interval, and comm port settings
such as baud rate, databits, parity, etc. The window also allows the setting of a default
phone number, the modem type (ISDN or POTS) to use to access the device, and one or
more port managers to be specified as the origin for field communications, each with its
own version of the default phone number. Lastly, a debug flag can be set to cause the data
packets exchanged with the device to be logged in a debug file.

3.3.1.24 TSSGeneralProperties (Class)

This class is a window that contains GUI controls to allow general configuration values of a
TSS to be viewed and modified. Controls exist to allow the name and location of a TSS to
be specified.

R1B2A Detailed Design Rev0 3-45 10/26/00

3.3.1.25 TSSStatus (Class)

This class holds current status information for a TSS as follows:

m_id — The ID of the TSS for which this status applies.

m_zoneGrpTrafficParms — The traffic parameters for each ZoneGroup of the
Transporation Sensor System as specified in the Sensor system’s TSSConfiguration object.

m_mode — The communication mode of the TSS.

m_opStatus — The operational status for the TSS.

m_trafficParameterTimestamp — A timestamp that records when the traffic parameter data
was collected from the device.

R1B2A Detailed Design Rev0 3-46 10/26/00

3.3.2 Sequence Diagrams

3.3.2.1 GUIRTMSModelSupporter:getTSSCreationMenuReps (Sequence Diagram)

As part of processing a right click on the TSS group in the navigator tree, the
GUITSSGroup allows each model supporter to contribute to the context menu. When the
GUIRTMSModelSupporter is asked for its creation menu items, it returns an array with a
single menu item, “Add RTMS.” This menu item is disabled if the user does not have
configure TSS privileges.

GUITSSGroup

GUIRTMSModelSupporter

MenuItemRep

getTSSCreationMenuItemReps

[user has configure TSS privileges]
create ("Add RTMS", enabled)

MenuItemRep
[user does NOT have

configure TSS privileges]
create ("Add RTMS", disabled)

MenuItemRep[]

Figure 20. GUIRTMSModelSupporter:getTSSCreationMenuReps (Sequence
Diagram)

R1B2A Detailed Design Rev0 3-47 10/26/00

3.3.2.2 GUIRTMSModelSupporter:createTSSWrapper (Sequence Diagram)

The GUIRTMSModelWrapper createTSSWrapper method is called when the
GUITSSModule discovers a TSS in the system via a trader query or when an event is
received indicating a TSS has been added to the system. If the TSS that has been discovered
or added is not an instance of an RTMS, this method returns null, indicating this model
supporter does not support the type of TSS that has been discovered or added. If the TSS
discovered or added is an RTMS, a wrapper object is created. In the case of an RTMS that
has been discovered, the current configuration and status of the RTMS is not known and the
wrapper retrieves this information from the RTMS object that is being wrapped.

GUITSSModule
GUIRTMSModelSupporter

GUIRTMS

RTMS

Two flavors of this method exist. One takes only one parameter, the RTMS object reference
being wrapped. This version is used during discovery. The other version takes an RTMS object reference,
a TSSConfiguration (optional), and a TSSStatus(optional). When the wrapper object is created, if the TSSConfiguration and
TSSStatus are not passed as parms, the wrapper must go to the wrapped CORBA object to retrieve them.

GUITSS

[error getting
configuration]

CHART2Exception
[error getting configuration]

null

[error getting
status]

CHART2Exception

[error getting status]
null

createTSSWrapper

create

[TSSConfiguration not passed as parm]
getConfiguration

[TSSStatus not passed as parm]
getStatus

[TSS not instanceof RTMS]
null

Figure 21. GUIRTMSModelSupporter:createTSSWrapper (Sequence Diagram)

R1B2A Detailed Design Rev0 3-48 10/26/00

3.3.2.3 GUIRTMS:setConfiguration (Sequence Diagram)

When the OK button is pressed on the GUITSSProperties window, it calls the
setConfiguration() method on the GUITSS object which spawned the window. The
GUIRTMS subclass of GUITSS implementation of the setConfiguration() method contains
processing specific to setting the configuration of an RTMS. If a reference to a
TransportationSensorSystem already exists in the GUIRTMS object, the setConfiguration()
method of the TransportationSensorSystem is called. If a reference does not exist, this
indicates the object was newly created in the GUI and needs to be added to the system. The
GUIRTMS accomplishes this by locating an RTMSFactory object in the system and
attempting to have the factory create a new RTMS object. Because there may be more than
one factory in the system capable of creating RTMS objects, this method tries to create an
RTMS object on each known factory until it achieves success or all factories have been
tried once or an AccessDenied exception is caught.

Note that when an RTMS is added to the system, its wrapper object (GUIRTMS) does not
get added to GUI within this routine. Instead, the wrapper is added to the GUI in the event
processing done on the CORBA event that is pushed from the RTMSFactory when the
RTMS is added. This allows the GUI to generically handle the addition of RTMSs,
regardless of whether the GUI happens to be the instance where the command to add the
RTMS originated.

DataModel

The Factory pushes an event when the RTMS is added to the system.
The GUI processes this event and adds the object to the data model
at that time. See the GUITSSModule:push sequence for details.

[error creating]
GUIException

[GUIException]
showError

[Exception]
GUIException

[GUIException]
showError

TransportationSensorSystem

[m_tss != null]
setConfiguration

Administrator

GUITSSProperties

actionPerformed
(OK Button)

GUIRTMS CORBAUtilities RTMSFactory

This call will get
all RTMSFactory
objects ordered by
proximity to GUI.

create

setConfiguration

[m_tss == null]
findAllObjectsOfType

[* for each factory
until object created
or access denied]

createRTMS
RTMS

Figure 22. GUIRTMS:setConfiguration (Sequence Diagram)

R1B2A Detailed Design Rev0 3-49 10/26/00

3.3.2.4 GUITSS:actionPerformed (Sequence Diagram)

When a user selects a menu item on a GUITSS context menu, the GUITSS actionPerformed
method is called. The GUITSS actionPerformed method simply routes the command to the
appropriate method for processing.

[User selected the "Remove" menu item]
remove

[User selected the "Properties" menu item]
doProperties

User

GUITSS
When user selects an item
in the context menu for a GUITSS
actionPerformed is called.

actionPerformed

[User selected the "Put Online" menu item]
putOnline

[User selected the "Take Offline" menu item]
takeOffline

[User selected the "Put In Maint Mode" menu item]
putInMaintenanceMode

[User selected the "Refresh" menu item]
refresh

Figure 23. GUITSS:actionPerformed (Sequence Diagram)

R1B2A Detailed Design Rev0 3-50 10/26/00

3.3.2.5 GUITSS:allowSetDesc (Sequence Diagram)

The navigator uses the allowSetDesc method to determine if an object displayed in the
navigator allows in-place editing of the description field. The GUITSS does not allow in-
place editing of the description field and always returns false.

Navigator
GUITSS

allowSetDesc

false

Figure 24. GUITSS:allowSetDesc (Sequence Diagram)

R1B2A Detailed Design Rev0 3-51 10/26/00

3.3.2.6 GUITSS:comparePropertyValues (Sequence Diagram)

The navigator calls an object’s comparePropertyValues method to determine ordering of
objects within the navigator when sorting occurs. The navigator by default sorts by doing a
string comparison. The GUITSS overrides this standard sorting for the Comm Mode, Op
Status, and last update time columns. The last update time is sorted as expected, with later
times being greater than earlier times. The comm mode is sorted in ascending order as
online, offline, maint mode. The op status is sorted as Hardware Failed, SW Comm Failed,
Comm Failed, and OK.

Note that the naviagator toggles sorts between ascending and descending order.

[this op status == op status of object passed]
0

Last Update Time comparisons use a standard
date comparison.

[this last update time > last update time of object passed]
+1

[this last update time < last update time of object passed]
-1

[this last update time == last update time of object passed]
0

Navigator
GUITSS

Comm Mode comparisons use the following
ordering, from greatest to least:

Online,
Offline,
Maint Mode

If passed property name is "Comm Mode", the following occurs:

If passed property name is "Op Status", the following occurs:

Op Status comparisons use the following
ordering, from greatest to least:

Hardware Failed
SW Comm Failed
Comm Failed
OK

If passed property name is "Last Update Time", the following occurs:

comparePropertyValues

[this comm mode > comm mode of object passed]
+1

[this comm mode < comm mode of object passed]
-1

[this comm mode == comm mode of object passed]
0

[this op status > op status of object passed]
+1

[this op status < op status of object passed]
-1

Figure 25. GUITSS:comparePropertyValues (Sequence Diagram)

R1B2A Detailed Design Rev0 3-52 10/26/00

3.3.2.7 GUITSS:doProperties (Sequence Diagram)

The GUITSS doProperties method is called by the GUITSS when a user selects the
“Properties” menu item from the GUITSS context menu or when a TSS is being added to
the system. The GUITSS creates the GUITSSProperties window that in turn creates
windows for its tabbed pane. The GUITSS then shows the window and returns. At this
point the user interacts with the window, viewing or changing values and pressing OK or
cancel when they are finished. When the cancel button is pressed, the window is dismissed,
making no changes to the TSS configuration and without adding a TSS to the system. When
the OK button is pressed, data is collected from the GUI components on the properties
windows and the GUITSS setConfiguration method is called. If the setConfiguration
method is successful, the properties window is dismissed. If an error occurs, the error is
displayed in an error panel and the properties window remains open.

R1B2A Detailed Design Rev0 3-53 10/26/00

doProperties

getFieldCommsData

actionPerformed (OK Button)

[setConfiguration successful]
cleanupResources

[setConfiguration successful]
cleanupResources

[setConfiguration successful]
cleanupResources

create

create

cleanupResources
cleanupResources

cleanupResources

getID

getName

getLocation

getConfigData

create

show

Administrator

closeWindow

create

[Cancel button pressed]
closeWindow

TSSGeneralProperties

TSSConfigProperties

GUITSSProperties

actionPerformed (Cancel Button)

see GUIRTMS:setConfiguration
for details.

Note - if error occurs, GUITSSProperties
window remains open.

setConfiguration

[error in setConfiguration]
showError

[error in setConfiguration]

GUITSSGUITSS OR
GUITSSGroup

TSSFieldCommsProperties

Figure 26. GUITSS:doProperties (Sequence Diagram)

R1B2A Detailed Design Rev0 3-54 10/26/00

3.3.2.8 GUITSS:getDesc (Sequence Diagram)

When the navigator asks the GUITSS for its description, the GUITSS simply returns the
name of the device as stored in its cached TSSConfiguration object.

Navigator
GUITSS TSSConfiguration

getDesc

get m_name

m_name

Figure 27. GUITSS:getDesc (Sequence Diagram)

R1B2A Detailed Design Rev0 3-55 10/26/00

3.3.2.9 GUITSS:getImage (Sequence Diagram)

When the navigator displays a row for a TSS, it asks the GUITSS for the image to display
in the first column of the navigator. The GUITSS returns a pre-loaded image based on its
current communication mode and operational mode. Note that an operational mode of
software comm failed exists on the GUI but not on the server side object. This state is used
to represent a condition where the GUI is unable to reach the server side object.

The GUITSS pre-loads all images into static variables when the class is first loaded through
the use of a static block. This allows all instances of GUITSS objects to share the same
image objects.

Navigator
GUITSS

Images are preloaded into static
members when the class is first
loaded by the virtual machine.
(Thus the images are shared by all
instances of GUITSS). This method
simply returns the proper image
based on the current state of the
TSS.

getImage

[online and OK]
m_TSSNormalImage

[software comm failed]
m_TSSSWCommFailImage

[comm failed]
m_TSSCommFailImage

[hardware failed]
m_TSSHWFailImage

[offline]
m_TSSOfflineImage

[maint mode]
m_TSSMaintModeImage

Figure 28. GUITSS:getImage (Sequence Diagram)

R1B2A Detailed Design Rev0 3-56 10/26/00

3.3.2.10 GUITSS:getMSMenuItemReps (Sequence Diagram)

When a user selects multiple TSS objects in the navigator and then right clicks on one, the
navigator asks each GUITSS object for its list of menu items to appear in the context menu.
The navigator displays only the menu items that are returned from all selected items. The
possible menu items to appear in a TSS pop-up menu are as follows:

Properties — only visible if device is in maintenance mode. Disabled if user does not have
TSS configuration privileges.

Put Online — only visible if device is not already online. Disabled if in maint mode and
user does not have maint mode privileges. Disabled if offline and user does not have device
comms privileges.

Take Offline — only visible if device is not already offline. Disabled if in maint mode and
user does not have maint mode privelges. Disabled if online and user does not have device
comms privileges.

Put in Maint Mode — only visible if device is not in maint mode. Disabled if user does not
have maint mode privileges.

Remove — only visible if device is offline. Disabled if user does not have TSS
configuration privileges.

Refresh — always visible; causes the GUI to refresh its cache by querying the TSS object
in the server for its current configuration and status.

R1B2A Detailed Design Rev0 3-57 10/26/00

"Remove" is disabled if user lacks
configure TSS privileges.

Navigator
GUITSS

Vector

"Properties" is disabled
if user lacks configure TSS
privileges

"Put Online" and "Take Offline"
are disabled if the user does
not have maint mode privileges

"Put in Maint Mode" is disabled
if user lacks maint mode privileges

"Put Online" is disabled
if user lacks device comms privileges

"Take Offline" is disabled
if user lacks device comms privileges

[TSS not in maint mode AND
TSS is online]

add ("Take Offline")

toArray

MenuItemRep[]

[TSS not in maint mode AND
TSS is Offline]

add ("Put Online")

[TSS is offline]
add ("Remove")

add ("Refresh")

getMSMenuItemReps

create

[TSS in maint mode]
add ("Properties")

[TSS in maint mode]
add("Take Offline")

[TSS not in maint mode]
add ("Put in Maint Mode")

[TSS in maint mode]
add("Put Online")

Figure 29. GUITSS:getMSMenuItemReps (Sequence Diagram)

R1B2A Detailed Design Rev0 3-58 10/26/00

3.3.2.11 GUITSS:getPropertyValue (Sequence Diagram)

When the navigator displays information for a TSS, it asks the GUITSS for the value for
each property of the TSS to be displayed in a column of the navigator. The GUITSS returns
property values based on its cached TSSConfiguration and TSSStatus objects.

Note that the GUITSSGroup tells the navigator all possible columns in its
getAllNavProperties method. The navigator may have a filter applied, in which case the
navigator will only ask the GUITSS for properties that are to be displayed.

Navigator

GUITSS
TSSConfiguration

m_config
TSSStatus
m_status

Date
m_lastUpdateTime

boolean
m_swCommFailed SimpleDateFormatter

getPropertyValue

[property name = "Name"]
get m_name

m_config.m_name

[property name = "Location"]
get m_location

m_config.m_location

[property name = "Comm Mode"]
get m_mode

m_status.m_mode (as string)

[property name = "Op Status" and m_swCommFailed == false]
get m_opStatus

[m_swCommFailed == false]
m_status.m_opStatus (as string)

[property name = "Last Update Time]
get m_lastUpdateTime

format

formatted m_lastUpdateTime

[property name = "Op Status"]
get m_swCommFailed

[m_swCommFailed == true]
"SW Comm Failed"

Figure 30. GUITSS:getPropertyValue (Sequence Diagram)

R1B2A Detailed Design Rev0 3-59 10/26/00

3.3.2.12 GUITSS:getSSMenuItemReps (Sequence Diagram)

When a user right clicks on a single TSS in the navigator, the navigator asks the GUITSS
object for its list of menu items to appear in the context menu for the object. The possible
menu items to appear in a TSS pop-up menu are as follows:

Properties — only visible if device is in maintenance mode. Disabled if user does not have
TSS configuration privileges.

Put Online — only visible if device is not already online. Disabled if in maint mode and
user does not have maint mode privileges. Disabled if offline and user does not have device
comms privileges.

Take Offline — only visible if device is not already offline. Disabled if in maint mode and
user does not have maint mode privelges. Disabled if online and user does not have device
comms privileges.

Put in Maint Mode — only visible if device is not in maint mode. Disabled if user does not
have maint mode privileges.

Remove — only visible if device is offline. Disabled if user does not have TSS
configuration privileges.

Refresh — always visible; causes the GUI to refresh its cache by querying the TSS object
in the server for its current configuration and status.

R1B2A Detailed Design Rev0 3-60 10/26/00

MenuItemRep[]

"Remove" is disabled if user lacks
configure TSS privileges.[TSS is offline]

add ("Remove")

Navigator
GUITSS

Vector

"Properties" is disabled
if user lacks configure TSS
privileges

"Put Online" and "Take Offline"
are disabled if the user does
not have maint mode privileges

"Put in Maint Mode" is disabled
if user lacks maint mode privileges

"Put Online" is disabled
if user lacks device comms privileges

getSSMenuItemReps

create

[TSS in maint mode]
add ("Properties")

[TSS in maint mode]
add("Put Online")

[TSS in maint mode]
add("Take Offline")

[TSS not in maint mode]
add ("Put in Maint Mode")

[TSS not in maint mode AND
TSS is Offline]

add ("Put Online")

add ("Refresh")

[TSS not in maint mode AND
TSS is online]

add ("Take Offline")

toArray

"Take Offline" is disabled
if user lacks device comms privileges

Figure 31. GUITSS:getSSMenuItemReps (Sequence Diagram)

R1B2A Detailed Design Rev0 3-61 10/26/00

3.3.2.13 GUITSS:putInMaintMode (Sequence Diagram)

When an administrator right clicks on a Transportation Sensor System that is not currently
in maintenance mode, a menu is presented that contains the “Put In Maint Mode” menu
item. When the user selects this item, the actionPerformed() method is called on the
GUITSS object, which dispatches the processing to the putInMaintMode method. This
command is processed by creating a CommandStatus object to allow the progress of the
command to be tracked asynchronously and then passing this CommandStatus and the
user’s token to the TransportationSensorSystem object’s putInMaintenanceMode() method.

GUITSS
GUITSS TransportationSensorSystem

The progress of the
operation is monitored using
the command status object.
The server updates the
the CommandStatus with
the progress of the command.
In case of failure the
CommandStatus contains the
reason for the failure.

If successful, this will push a
ModeChanged event.
The event is handled in the GUI
by notifying the relevant GUI
components via the DataModel.

CommandStatus

CommandStatusHandlerGUI

getToken

putInMaintMode

putInMaintenanceMode

getCommandStatusHandler

createCommandStatus

get

[no rights]
AccessDenied

create

[other error]
CHART2Exception

Figure 32. GUITSS:putInMaintMode (Sequence Diagram)

R1B2A Detailed Design Rev0 3-62 10/26/00

3.3.2.14 GUITSS:putOnline (Sequence Diagram)

When an administrator right clicks on a Transportation Sensor System that is not currently
online, a menu is presented that contains the “Put Online” menu item. When the user selects
this item, the actionPerformed() method is called on the GUITSS object, which dispatches
the processing to the putOnline method. This command is processed by creating a
CommandStatus object to allow the progress of the command to be tracked asynchronously
and then passing this CommandStatus and the user’s token to the
TransportationSensorSystem object’s putOnline() method.

putOnline

getCommandStatusHandler

createCommandStatus

get

[no rights]
AccessDenied

create

[other error]
CHART2Exception

GUITSS
GUITSS TransportationSensorSystem

The progress of the
operation is monitored using
the command status object.
The server updates the
the CommandStatus with
the progress of the command.
In case of failure the
CommandStatus contains the
reason for the failure.

If successful, this will push a
ModeChanged event.
The event is handled in the GUI
by notifying the relevant GUI
components via the DataModel.

CommandStatus

CommandStatusHandlerGUI

getToken

putOnline

Figure 33. GUITSS:putOnline (Sequence Diagram)

R1B2A Detailed Design Rev0 3-63 10/26/00

3.3.2.15 GUITSS:refresh (Sequence Diagram)

When a user right clicks on a Transportation Sensor System, a menu is presented that
contains the “Refresh” menu item. When the user selects this item, the actionPerformed()
method is called on the GUITSS object, which dispatches the processing to the refresh
method. This command is processed by calling the TSS object’s getConfiguration and
getStatus methods, refreshing the GUITSS cache with the data that is obtained, and
notifying the data model that the object has been updated.

GUITSS
GUITSS

TransportationSensorSystem DataModel

refresh

getConfiguration

getStatus

updateCache objectUpdated

Figure 34. GUITSS:refresh (Sequence Diagram)

R1B2A Detailed Design Rev0 3-64 10/26/00

3.3.2.16 GUITSS:remove (Sequence Diagram)

When an administrator right clicks on a Transportation Sensor System that is offline, a
menu is presented that contains the “Remove” menu item. When the user selects this item,
the actionPerformed() method is called on the GUITSS object, which dispatches the
processing to its remove method. The user is provided a warning to keep them from
accidentally removing a TSS from the system. If the user chooses to continue with the
removal, this command is processed by creating a CommandStatus object to allow the
progress of the command to be shown in the command status window. Note that the server
does not process this command asynchronously, so the command status is used only for
consistency with other commands. The TransportationSensorSystem object’s remove()
method is called to remove the object from the system.

getToken

showYesNoDialog

[user chose NO - don't remove]

[error]
showInfoDialog

GUITSS
GUITSS TransportationSensorSystem

The progress of the
operation is monitored using
the command status object.
The server updates the
the CommandStatus with
the progress of the command.
In case of failure the
CommandStatus contains the
reason for the failure.

remove

getCommandStatusHandler

createCommandStatus

get

If successful, this will push an
ObjectRemoved event.
The event is handled in the GUI
by notifying the relevant GUI
components via the DataModel.

CommandStatus

CommandStatusHandlerGUI

[no rights]
AccessDenied

create

[other error]
CHART2Exception

remove

Server does not use a command status for
remove, but the GUI uses one for consistency.

completed

Figure 35. GUITSS:remove (Sequence Diagram)

R1B2A Detailed Design Rev0 3-65 10/26/00

3.3.2.17 GUITSS:takeOffline (Sequence Diagram)

When an administrator right clicks on a Transportation Sensor System that is not currently
offline, a menu is presented that contains the “Take Offline” menu item. When the user
selects this item, the actionPerformed() method is called on the GUITSS object, which
dispatches the processing to its takeOffline method. This command is processed by creating
a CommandStatus object to allow the progress of the command to be tracked
asynchronously and then passing this CommandStatus and the user’s token to the
TransportationSensorSystem object’s takeOffline() method.

takeOffline

GUITSS
GUITSS TransportationSensorSystem

The progress of the
operation is monitored using
the command status object.
The server updates the
the CommandStatus with
the progress of the command.
In case of failure the
CommandStatus contains the
reason for the failure.

If successful, this will push a
ModeChanged event.
The event is handled in the GUI
by notifying the relevant GUI
components via the DataModel.

CommandStatus

CommandStatusHandlerGUI

getToken

takeOffline

getCommandStatusHandler

createCommandStatus

get

[no rights]
AccessDenied

create

[other error]
CHART2Exception

Figure 36. GUITSS:takeOffline (Sequence Diagram)

R1B2A Detailed Design Rev0 3-66 10/26/00

3.3.2.18 GUITSSGroup:actionPerformed (Sequence Diagram)

When the user selects a menu item from the pop-up created by right clicking on the TSS
folder in the navigator, the GUITSSGroup object’s actionPerformed method is called with
information about which menu item was selected. The GUITSSGroup gets the list of model
supporters from the GUITSSModule and asks each if it can create the type of TSS indicated
by the menu item that was selected. When a model supporter is found that can create a
GUITSS object, the search is over. The GUITSSGroup then calls the doProperties method
on the GUITSS object that was created, allowing the user to enter configuration data. See
the GUIRTMS:doProperties sequence for details.

GUITSSModule GUITSSModelSupporter

GUITSS

Administrator

GUITSSGroup

get

getModelSupporters

[* while more model supporters
AND a GUITSS has not been created]]

createNewTSS [if menu string
 from this

model supporter]
create

doProperties

Refer to GUIRTMS:doProperties
for details.

actionPerformed

Figure 37. GUITSSGroup:actionPerformed (Sequence Diagram)

R1B2A Detailed Design Rev0 3-67 10/26/00

3.3.2.19 GUITSSGroup:getAllNavProperties (Sequence Diagram)

When a NavClassFilter such as the GUITSSGroup is selected by the user, the navigator
needs to know what columns to show in the navigator. It determines the columns by calling
the filter’s getAllNavProperties() method. The GUITSSGroup implements this method by
returning an array of the following columns:

Location — Text description as entered by the administrator

Communication Mode — Online, Offline, Maint Mode

Operational Status — OK, Hardware Failed, Comm Failed, SW Comm Failed

Update Time — Last time the cached info for this TSS was updated.

Note that these are in addition to the standard navigator columns that contain an icon and
the name.

NavPropertycreate ("Update Time")

store at index 3

create ("Comm Mode")

store at index 2

Navigator

GUITSSGroup

NavProperty[]

NavProperty

NavProperty

getAllNavProperties

create

create ("Location")

store at index 0

create ("Op Status")

store at index 1

NavProperty[]

NavProperty

Figure 38. GUITSSGroup:getAllNavProperties (Sequence Diagram)

R1B2A Detailed Design Rev0 3-68 10/26/00

3.3.2.20 GUITSSGroup:getSSMenuItemReps (Sequence Diagram)

When the user right clicks on the GUITSSGroup in the navigator tree, the navigator calls
the GetMenuItemReps() method to allow the GUITSSGroup to add items to the pop-up
menu. The GUITSSGroup asks all model supporters in the GUITSSModule to supply their
own list of items for the pop-up menu, and all are returned as a single array of
MenuItemRep objects.

Navigator
GUITSSGroup GUITSSModule GUITSSModelSupporter

java.util.Vector

getSSMenuItemReps

get

getModelSupporters

getTSSCreationMenuReps()

[* for each model
supporter]

MenuItemRep[]

create

[* for each
MenuItemRep]

add

toArray

MenuItemRep[]

Figure 39. GUITSSGroup:getSSMenuItemReps (Sequence Diagram)

R1B2A Detailed Design Rev0 3-69 10/26/00

3.3.2.21 GUITSSModule:discoverEventChannels (Sequence Diagram)

At startup and periodically during the life of the GUI, the GUI calls each module to allow it
to discover CORBA event channels that are of interest to the module. When the
GUITSSModule’s discoverEventChannels() method is called, it retrieves its CORBA object
reference from the POA and then calls a GUI utility method that discovers all CORBA
event channels of the specified name and connects the module as a PushConsumer to the
event channel.

Note: The TSSManagementModule in the server uses two event channels, one for pushing
status and configuration changes, and another to push data collected from sensors. At this
time, this module only connects to the status channel because the sensor data is not
displayed in the GUI.

This module passes an event channel
name of TSS_EVENT_CHANNEL_STATUS
and passes its obj ref as retrieved from the
POA as the PushConsumer.

PushEventConsumer

GUI

GUITSSModule CORBAUtilities EventConsumerGroup

[*for each event channel found]
create

GUI org.omg.PortableServer.POA
org.omg.CosEventComm.

PushConsumerHelper

get

getPOA(GUI.ROOT_POA_NAME)

id_to_reference (ID stored during startup's call to activate_object)

narrow (ref from previous call)

discoverEventChannelsOfName

discoverEventChannels

findObjects

add

Figure 40. GUITSSModule:discoverEventChannels (Sequence Diagram)

R1B2A Detailed Design Rev0 3-70 10/26/00

3.3.2.22 GUITSSModule:discoverObjects (Sequence Diagram)

At startup and periodically during the life of the GUI application, the GUI object calls each
module to have them discover distributed objects for which the module provides GUI
access. Upon receiving this call, the GUITSSModule makes a trader query (via the
CorbaUtilities class) to discover all TransportationSensorSystemFactory objects in the
system. The module then gets a list of TransportationSensorSystem objects from each
factory, and for each TransportationSensorSystem checks to see if the GUI is already aware
of the object by checking in the DataModel. If the object is not already known to the GUI,
the module asks each of its model supporters to create a wrapper for the object. The model
supporter that supports the specific subclass of TransporationSensorSystem creates a
derived GUITSS object to wrap the CORBA object, while model supporters that don’t
support the subclass return null. After a model supporter is found that can create a wrapper,
the wrapper object is added to the DataModel.

See GUIRTMSModelSupporter:
createTSSWrapper for details.

GUI
GUITSSModule CorbaUtilities

TransportationSensor
SystemFactory

TransportationSensor
System DataModelGUITSSModelSupporter

discoverObjects

findAllObjectsOfType (TransportationSensorSystemFactory)

getList

[* for each TSSListEntry]
[*for each TSS factory]

getObject

createTSSWrapper

[supporter for specified type of TSS]
GUITSS

[NOT supporter for given type of TSS]
null

[supporter created a wrapper]
objectAdded

[not found in data model]
[*while more

TSSModelSupporters
and GUITSS
has not been

created]

Figure 41. GUITSSModule:discoverObjects (Sequence Diagram)

R1B2A Detailed Design Rev0 3-71 10/26/00

3.3.2.23 GUITSSModule:getMenuItemReps (Sequence Diagram)

When the user right clicks in the open area of the task bar on the GUI, the GUI calls each
installed module to allow them to add menu items to the general GUI pop-up menu. The
GUITSSModule has no items to contribute, so it returns a zero length array.

GUI

GUITSSModule

getMenuItemReps

new MenuItemRep[0]

Figure 42. GUITSSModule:getMenuItemReps (Sequence Diagram)

R1B2A Detailed Design Rev0 3-72 10/26/00

3.3.2.24 GUITSSModule:handleCommand (Sequence Diagram)

When the user selects a menu item from the GUI’s general pop-up menu (as constructed by
calling each module’s getMenuItemReps() method), the GUI passes the event to each
module to allow them to handle it. Because the GUITSSModule contributes no items to the
general GUI pop-up, it does no processing in its handleCommand() method.

GUI

GUITSSModule

handleCommand

false

Figure 43. GUITSSModule:handleCommand (Sequence Diagram)

R1B2A Detailed Design Rev0 3-73 10/26/00

3.3.2.25 GUITSSModule:loggedIn (Sequence Diagram)

The GUI notifies the GUITSSModule when a user logs into the GUI. The GUITSSModule
has no processing to perform and just returns.

GUI
GUITSSModule

loggedIn

Figure 44. GUITSSModule:loggedIn (Sequence Diagram)

R1B2A Detailed Design Rev0 3-74 10/26/00

3.3.2.26 GUITSSModule:push (Sequence Diagram)

The GUITSSModule is a PushConsumer and receives all events that the server pushes on
the TSS status event channel. When an event is received, the module creates a
GUITSSEventHandler object and passes it to the java swing engine so it can be invoked on
the main GUI thread. When the GUITSSEventHandler is run from the GUI thread, it calls
back into the GUITSSModule handleCORBAEvent method to process the event data. The
processing of the event data involves determining the discriminator contained in the
TSSEvent object and processing based on the type of event.

For ConfigChanged, OpStatusChanged, and ModeChanged events, the GUITSS object for
which the event applies is retrieved from the DataModel and its cached values are updated,
causing the GUITSS to notify the DataModel that it has been updated.

When an ObjectAdded event is received, the DataModel is checked to make sure the object
does not already exist. If the object does not exist, the GUITSSModule asks each of the
installed model supporters to create a wrapper for the object that has been added. The
model supporter for the type of TSS that was added creates a GUITSS derived object, and
the object is passed to the DataModel in an ObjectAdded call.

When an ObjectRemoved event is received, the ObjectRemoved method is called on the
DataModel to remove the object from the GUI.

R1B2A Detailed Design Rev0 3-75 10/26/00

GUITSSModelSupporter

[object does not exist]
[*while more

TSSModelSupporters
and GUITSS
has not been

created]

createTSSWrapper

[supporter for specified type of TSS]
GUITSS

[NOT supporter for given type of TSS]
null

[supporter created a wrapper]
objectAdded

If the TSSEventType in the event data is ObjectRemoved, the following is performed.

objectRemoved

EventChannel

GUITSSModule DataModel

GUITSSEventHandler

javax.swing.SwingUtilities

get

getDataModel

getObject

extractData

updateCache
objectUpdated

If the TSSEventType in the event data is ObjectAdded, the following is performed.

getObject

See GUIRTMSModelSupporter:
createTSSWrapper for details.

TSSEventHelperGUI

If the TSSEventType in the event data is ConfigChanged, OpStatusChanged, or ModeChanged the following is performed.

GUITSS

push

create

invokeLater

run

handleCORBAEvent

Figure 45. GUITSSModule:push (Sequence Diagram)

R1B2A Detailed Design Rev0 3-76 10/26/00

3.3.2.27 GUITSSModule:loggedOut (Sequence Diagram)

The GUI notifies the GUITSSModule when the user logs out from the GUI. The
GUITSSModule has no processing to perform in response to this notification and simply
returns.

GUI
GUITSSModule

loggedOut

Figure 46. GUITSSModule:loggedOut (Sequence Diagram)

R1B2A Detailed Design Rev0 3-77 10/26/00

3.3.2.28 GUITSSModule:shutdown (Sequence Diagram)

When the GUI instructs the GUITSSModule to shutdown, the GUITSSModule disconnects
itself from the ORB and releases its reference to each GUITSSModelSupporter it
constructed during startup, allowing these classes to be garbage collected.

GUI org.omg.PortableServer.POA

get

getPOA(GUI.ROOT_POA_NAME)

deactivate_object

GUI
GUITSSModule GUITSSModelSupporter[]

shutdown

[*for each element in
the GUITSSModelSupporter

array]
item = null

Figure 47. GUITSSModule:shutdown (Sequence Diagram)

R1B2A Detailed Design Rev0 3-78 10/26/00

3.3.2.29 GUITSSModule:startup (Sequence Diagram)

When the GUITSSModule is started by the GUI, it constructs model supporters for the
various types of TSS models it supports. At the time of this writing, the only model
supported is RTMS. The module also connects itself to the ORB so it can receive CORBA
calls via its PushConsumer interface.

Finally, the module initializes filters that it owns. It first asks the GUI’s filter manager for
all filters previously created, either as a user preference or as a global addition by an
administrator. This module activates each of these pre-existing filters, making them
available in the navigator. If previously created filters do not exist, this module must create
its Group (TSS) for the navigator tree and activate it, making it available in the navigator.

GUITSSGroup
[No filters are currently owned by this module]

create

[GUITSSGroup newly created]]
activate

FilterManager

The Filter owner value used by this module
is FilterOwner.GUITSSModule. The Filter ID
value used by this module is
FilterID.GUITSSModule.GUITSSGroup

NavTreeFilter

getFilterManager

getOwnedFilters

activate[*for each
existing filter]

GUI org.omg.PortableServer.POA

The module connects
to the ORB because it
implements the CORBA
PushConsumer interface.

get

getPOA(GUI.ROOT_POA_NAME)

activateObject (this)

store ID assigned
by the ORB

create

GUI

GUITSSModule

GUIRTMSModelSupporter

startup

addModelSupporter

Figure 48. GUITSSModule:startup (Sequence Diagram)

R1B2A Detailed Design Rev0 3-79 10/26/00

3.4 DeviceUtility

3.4.1 PortLocatorClasses (Class Diagram)

1

returns connected port in

11

1..*1

1

1

*

1

1*

PortLocationData

ConnectedPortInfo

PortManagerListEntry

PortLocator

ModemPortLocator CommFailureDB

CommFailureData CommFailureCode

1

PortManagerCommsData[] m_commsData;
PortType m_portType;
int m_portWaitTimeSecs;

Port m_port
String m_portName
PortManager m_portMgr
String m_portMgrName

String m_portMgrName;
PortManager m_portMgrRef;PortLocator(PortLocationData, ORB, Lookup, CommFailureDB):PortLocator

getConnectedPort(String opDescription, CommandStatus):ConnectedPortInfo
releaseConnectedPort(ConnectedPortInfo):void
abstract connectPort(Port, PortManagerCommsData):int
-getPort(String portManagerName):Port

static int CONN_RSLT_OK;
static int CONN_RSLT_FAIL_RETRY;
static int CONN_RSLT_FAIL_NO_RETRY;
Vector m_portManagerRefList;
org.omg.CORBA.ORB m_orb;
org.omg.CosTrading.Lookup m_lookup;
&CommFailureDB m_commFailureDB;

connectPort(Port, PortManagerCommsData):int addCommFailureLogEntry(CommFailureData):void

DBConnectionManager dbConnMgr

String portManagerName
PortType portType
String portName
int failureCode
int modemResponseCode
String logText

SOFTWARE_ERROR
ACQUIRE_PORT_MGR_NOT_AVAILABLE
ACQUIRE_PORT_TYPE_NOT_SERVED
ACQUIRE_NO_PORTS_AVAILABLE
CONNECT_GENERAL_FAILURE
CONNECT_MODEM_NOT_RESPONDING
CONNECT_PORT_OPEN_FAILURE
CONNECT_MODEM_CONNECT_FAILURE

Figure 49. PortLocatorClasses (Class Diagram)

R1B2A Detailed Design Rev0 3-80 10/26/00

3.4.1.1 CommFailureCode (Class)

This class defines static values to be used to specify the type of comm failure in a
CommFailureData object.

3.4.1.2 CommFailureData (Class)

This class holds data to be passed to the CommFailureDB class to be logged in the Comm
failure log in the database.

3.4.1.3 CommFailureDB (Class)

This class is a utility used to log an entry in the Comm Failure log table in the database.
This table is used to log details about any comm failure that occurs in the system.

3.4.1.4 ConnectedPortInfo (Class)

This class holds data pertaining to a port that was acquired and connected via the
PortLocator.

typedef

3.4.1.5 ModemPortLocator (Class)

This class provides an implementation of the PortLocator’s abstract connectPort() method
that can connect a ModemPort that has been acquired by the PortLocator base class. This
derived class logs information in the comm failure database table relating to connection
problems that may occur.

3.4.1.6 PortLocationData (Class)

This class contains configuration data that specifies the communication server(s) to use to
communicate with a device.

m_commsData — One or more objects identifying the communications server
(PortManager) to use to communicate with the device, in order of preference.

m_portType — The type of port to use to communicate with the device (ISDN modem,
POTS modem, direct, etc.)

m_portWaitTimeSecs — The maximum number of seconds to wait when attempting to
acquire a port from a port manager.

R1B2A Detailed Design Rev0 3-81 10/26/00

3.4.1.7 PortLocator (Class)

The PortLocator is a utility class that helps one to utilize the fault tolerance provided by the
deployment of many PortManagers. The PortLocator is initialized by specifying a preferred
PortManager and optionally one or more alternate PortManagers using a PortLocationData
object.

When asked to get a connected port, the PortLocator first attempts to acquire a port from
the preferred PortManager and then calls its abstract connectPort() method (implemented by
derived classes) to attempt to connect to the port. If a failure occurs, the PortLocator retries
the sequence using the next PortManager in the list. The list may contain the same port
manager multiple times to have retries occur on the same port manager prior to moving to
another. In the event that the PortLocator will perform a retry on the same port manager, it
holds the previously acquired port while performing the retry to avoid having the port
manager return the same port during the retry. When a different port is acquired during a
retry on the same port manager, the port is released (prior to connecting the 2nd port).

3.4.1.8 PortManagerListEntry (Class)

This class is used by the PortLocator to map object identifiers to object references for
PortManager objects.

R1B2A Detailed Design Rev0 3-82 10/26/00

3.4.2 Sequence Diagrams

3.4.2.1 ModemPortLocator:connectPort (Sequence Diagram)

This sequence shows the ModemPortLocator processing involved when its base class
invokes the virtual connectPort method. The ModemPortLocator casts the port retrieved by
the base class into a ModemPort and calls its connect method. The ModemPortLocator then
interprets the results of the connect call and returns a code to the base class to indicate
success, failure - retries should not be attempted, or failure - retries may be attempted. The
failure - retries should not be attempted result code is used in situations where a retry on a
different port would likely yield the same result or when a software failure is encountered.
If a failure occurs, detailed comm failure data is logged to the database comm failure table.

Note: this feature is controlled by the constructor of the class, allowing test programs to use
this class without requiring a database connection.

R1B2A Detailed Design Rev0 3-83 10/26/00

[TRANSIENT]
CONN_RSLT_FAIL_RETRY

connectPort

get phone number

m_commFailureDB

Base class protected
member.

CommFailureData

[failure]
Exception Specific to Failure Type

[ModemNotResponding]
CONN_RSLT_FAIL_RETRY

[failure and m_commFailureDB != null]
create

[failure and m_commFailureDB != null]
addCommFailureLogEntry

[CORBA_COMM_FAILURE]
CONN_RSLT_FAIL_RETRY

[ConnectFailure]
CONN_RSLT_FAIL_NO_RETRY

[ModemInitFailure]
CONN_RSLT_FAIL_RETRY

[ModemConnectFailure
And ModemResponseCode ==
NO_CARRIER, NO_DIALTONE,

ERROR, or UNKNOWN]
CONN_RSLT_FAIL_RETRY

[ModemConnectFailure
And ModemResponseCode NOT
NO_CARRIER, NO_DIALTONE,

ERROR, or UNKNOWN]
CONN_RSLT_FAIL_NO_RETRY

[CHART2Exception]
CONN_RSLT_FAIL_NO_RETRY

PortLocator

ModemPortLocatorVirtual Function
call on derived class PortManagerCommsData ModemPort

connect

[success]
[success]

CONN_RSLT_OK

The remainder of this sequence shows the error handling. When an error occurs in the ModemPort connect call,
an exception is thrown. The ModemPortLocator logs the error and decides if the type of error should halt retries (if any)
See the specific Exceptions on the returns from ModemPortLocator to PortLocator.

[OBJECT_NOT_EXIST]
CONN_RSLT_FAIL_RETRY

[PortOpenFailure]
CONN_RSLT_FAIL_RETRY

Figure 50. ModemPortLocator:connectPort (Sequence Diagram)

R1B2A Detailed Design Rev0 3-84 10/26/00

3.4.2.2 PortLocator:getConnectedPort (Sequence Diagram)

The getConnectedPort method of the PortLocator utility uses the list of PortManager names
and associated connection information (such as phone number to use) to attempt to acquire
a port and connect it to the remote destination. Retry logic exists to try each PortManager in
succession until a port is successfully connected or an attempt to connect fails and the type
of failure is not likely to benefit from a retry on a different port. The list of port manager
names can contain duplicate entries to cause the port locator to use a different port on the
same port manager. When this is the case, the port locator must hold the previously
acquired port while it attempts to get an additional port from the port manager to ensure the
port manager doesn’t return the same port twice.

The connection logic is carried out in the derived class connectPort() method, for this logic
varies depending on the type of port requested. A private getPort() method handles logic to
retrieve a port from a single port manager and process errors. Sequences for these methods
exist in the ModemPortLocator:connectPort() sequence and the PortLocator:getPort()
sequence.

R1B2A Detailed Design Rev0 3-85 10/26/00

[More entries in port manager list
and next entry is different than this

entry]
releasePort

[previous port (if any) not released]
releasePort

See the ModemPortLocator:connectPort
sequence diagram for details.

ConnectedPortInfo

[port retrieved]
connectPort

[success]
CONN_RSLT_OK

[CONN_RSLT_OK]
create

[CONN_RSLT_OK]
ConnectedPortInfo

[failure]
CONN_RSLT_FAIL_RETRY or

CONN_RSLT_FAIL_NO_RETRY
[CONN_RSLT_FAIL_NO_RETRY]

CHART2Exception

[unable to
successfully acquire

and connect port]
CHART2Exception

Device
Object PortLocator PortLocationData

See PortLocator:getPort
sequence for details

ModemPortLocator

These classes are one in the same.
The ModemPortLocator is derived from
PortLocator. They are shown separately
to highlight base class processing vs.
derived class processing

getConnectedPort

[*while more portmanagers
in PortLocationData

and Port not
connected

and retry eligible]

get next PortManagerCommsData entry

getPort

Figure 51 PortLocator:getConnectedPort (Sequence Diagram)

R1B2A Detailed Design Rev0 3-86 10/26/00

3.5 CHARTWebModule

3.5.1 CHARTWebModuleClasses (Class Diagram)

3.5.1.1 CosEvent.PushConsumer (Class)

The PushConsumer interface is the interface to an event channel that a supplier of
information uses to push event updates to consumers who have previously attached to the
channel.

3.5.1.2 EventConsumerGroup (Class)

This class represents a collection of event consumers that will be monitored to verify that
they do not lose their connection to the CORBA event service. The class will periodically
ask each consumer to verify its connection to the event channel on which it is dependent to
receive events.

3.5.1.3 CHARTWebModule (Class)

This class implements the CORBA PushConsumer interface and is therefore a CORBA
object that is connected to the ORB and is called remotely by an EventChannel (via its
PushConsumer push() method) when data is pushed on the channel. This module connects
to the TSS status and event channels that exist in the system to allow this module to be
notified of status and configuration changes to TSS objects.

EventConsumerGroup

CosEvent.PushConsumer
CHARTWebModule

handleCORBAEvent(Any eventData):void

DBAccess

openConnection(connStr, uName, pw, db):void
closeConnection():void
createStatement(str):void

DBQuery

executeQuery(qstr):void

Figure 52 CHARTWebModuleClasses (Class Diagram)

R1B2A Detailed Design Rev0 3-87 10/26/00

3.5.1.4 DBAccess (Class)

This class creates a database connection and stores connection information for reconnecting
if a disconnect occurs.

3.5.1.5 DBQuery (Class)

This class allows a database command to be sent to the CHARTWeb database through an
established connection.

R1B2A Detailed Design Rev0 3-88 10/26/00

3.5.2 CHARTWebModule:ModeChanged (Sequence Diagram)

The CHART II system pushes an event to the Chartweb.RTMSClient when the mode (online,
offline, or maintenance) for an RTMS is changed. The Chartweb.RTMSClient handles this event
by updating all rows in the web database for the given RTMS ID with the new mode. The web
map will only show data for rows in the database that are marked “online.”

CHART II

Chartweb.RTMSClient Web DB

ModeChanged Event

Update all rows for the given RTMS ID
with the current mode

Figure 53. CHARTWebModule:ModeChanged (Sequence Diagram)

R1B2A Detailed Design Rev0 3-89 10/26/00

3.5.3 CHARTWebModule:OpStatusChanged (Sequence Diagram)

The CHART II system pushes an event to the Chartweb.RTMSClient when the status (OK,
Communications Failure, or Hardware Failure) for an RTMS is changed. The
Chartweb.RTMSClient handles this event by updating all rows in the web database for the given
RTMS ID with the new status.

CHART II

Chartweb.RTMSClient Web DB

OpStatusChanged Event

Update all rows for the given RTMS ID
with the current status

Figure 54. CHARTWebModule:OpStatusChanged (Sequence Diagram)

R1B2A Detailed Design Rev0 3-90 10/26/00

3.5.4 CHARTWebModule:currentStatusPush (Sequence Diagram)

When updates to the status of RTMS devices are received on the Data event channel, the
Chartweb.RTMSClient makes appropriate updates to the web database.

Insert row for RTMS ID, zone group ID

CHART II

Chartweb.RTMSClient Web DB

push(CurentStatus)

[* for each RTMSImpl

Figure 55. CHARTWebModule:currentStatusPush (Sequence Diagram)

R1B2A Detailed Design Rev0 3-91 10/26/00

3.5.5 CHARTWebModule:ConfigChanged (Sequence Diagram)

When a push(ConfigChanged) message is received on the Status event channel, the
Chartweb.RTMSClient makes no updates to the web database.

CHART II

Chartweb.RTMSClient Web DB

push(ConfigChanged)

Figure 56. CHARTWebModule:ConfigChanged (Sequence Diagram)

R1B2A Detailed Design Rev0 3-92 10/26/00

3.5.6 CHARTWebModule:Initialize (Sequence Diagram)

When the Chartweb.RTMSClient is first initialized, it prepares itself to receive asynchronous
updates of RTMS status from the CHART II system and then gets the current state of RTMS
objects from CHART II and sets the web database data to match the CHART II current state.
After this initialization is complete, updates to the status of RTMS devices are received
asynchrounously as changes occur, at which time the Chartweb.RTMSClient makes appropriate
updates to the web database. See the other CHARTWebModule sequence diagrams for details.

If the Chartweb.RTMSClient is unable to contact the CHART II trader or event service, all
devices in the web DB are marked offline and this sequence is retried periodically.

If individual RTMS objects within the CHART II system cannot be contacted, rows for the
specific RTMS are marked offline in the web database and this sequence is retried periodically.

This sequence is also carried out when the Chartweb.RTMSClient suspects the CHART II
system has gone down due to the lack of events received from CHART II. When this occurs, this
initialization sequence will serve to verify the current status of the RTMS objects or to confirm
that CHART II is not fully available and to mark the appropriate RTMS objects offline.

R1B2A Detailed Design Rev0 3-93 10/26/00

Update all rows for given RTMS ID with mode and operational status

[RTMS mode == Online AND
Op Status == OK]

[* for each RTMSTrafficParameters
in the RTMSStatus]

Update current speed range data for RTMS ID, zone group id

Web Server
org.omg.CosTrading.Lookup RTMSorg.omg.CosEventComm.EventChannel

After initialization is complete, the Chartweb.RTMSClient maintains the status information via asynchronous events received from the event channel(s).

[*for each RTMS Event Channel]
"Add push consumer"

Web DB

initialize

RTMSStatus

[*for each RTMS]

Chartweb.RTMSClient

getStatus

query("RTMS Event Channels")

query("RTMS")

[* for each zone group
in the RTMSConfig

getConfiguration

RTMSConfig

[row does not exist for RTMS ID, zone group ID]
Insert

[* for each zone group
that exists in the web DB
but does not exist in the

RTMSConfig

Delete

Figure 57. CHARTWebModule:Initialize (Sequence Diagram)

R1B2A Detailed Design Rev0 3-94 10/26/00

3.5.7 ChartWeb Database Tables

Figure 58. CHARTWeb Database Tables

device_id
device_name
location

tss_devices
device_id
device_id/1 (FK)
x_coord
y_coord
location

tss_gis

device_id
zone_group_num
description
direction
default_speed

tss_zones

device_id
device_id/1 (FK)
mode_id

tss_comm_mode

device_id
status_id

tss_op_status

mode_id
mode_txt

tss_comm_lkp

status_id
status_txt

op_status_lkp

device_id
zone_group_num
speed
volume
percent_occupancy

tss_traffic_data

device_id
zone_group_num
display_id
x_offset
y_offset

tss_zone_display

display_id
display_txt

tss_display

R1B2A Detailed Design Rev0 3-95 10/26/00

3.6 CHART Web Map Server

3.6.1 CHART Web Map Server (Class Diagram)

Figure 59. CHART Web Map Server Business Classes

3.6.1.1 Business Service Classes

3.6.1.1.1 clsMapServer (Class)

This is the top class for the map server application. Contains all components in the web
mapping application

3.6.1.1.2 clsWebRequest (Class)

This class holds the parameters of the web map request, such as the boundary of the map,
layer on/off settings, etc.

3.6.1.1.3 clsWebResponse (Class)

This class holds the parameters of the web map response, such as the return parameters,
map image location, etc.

R1B2A Detailed Design Rev0 3-96 10/26/00

3.6.2 CHART II Web Map Server Data Service Classes

3.6.2.1 RTMSZoneDisplay

This class stores display configurations for each zone group, including DisplayID that
enumerates the display settings for zone groups with valid values NONE, INTERNAL,
INTRANET, and INTERNET. Also included in this class is the X/Y offset for each group
to adjust the map display so that clustered symbols could be avoided or reduced.

3.6.2.2 RTMSZoneGroup

This class holds data for RTMS zone groups, such as speed, volume, and percent
occupancy.

3.6.2.3 RTMSGIS

This class holds the GIS data related with each RTMS device, including its X/Y
coordinates, device ID, location description and RTMSZoneGroups for this RTMS device.

3.6.3 CHART II Web Map Server User Service Classes

3.6.3.1 RTMSRenderer

This class is used to paint the RTMS symbols to the map for display. It also holds a cached
version of the RTMSGIS data collection.

3.6.4 CHARTWebMapServerModule:ServiceInternetRequest (Sequence Diagram)

When web map server receives web map request, MapServer calls the Draw method of
RTMSRenderer. RTMSRenderer check its cached RTMSGISData, if RTMSRenderer data
is too old, it will call RetrieveData method of RTMSGIS to retrieve a new set of RTMSGIS
data including location information for the device, zone groups and their status data.
RTMSRenderer loops through the RTMSGIS collection, based on default speed, speed,
volume, percent occupancy information, call DrawRTMS method to display the zone group
with appropriate symbol on the map

R1B2A Detailed Design Rev0 3-97 10/26/00

Figure 60. CHARTWebMapServer:ServiceInternetRequest (Sequence Diagram)

R1B2A Detailed Design AC-1 10/26/00

Acronyms

The following acronyms appear throughout this document:

BAA Business Area Architecture

CORBA Common Object Request Broker Architecture

DBMS Database Management System

FMS Field Management Station

GUI Graphical User Interface

IDL Interface Definition Language

ITS Intelligent Transportation Systems

ORB Object Request Broker

POA Portable Object Adapter

RTMS Remote Traffic Microwave Sensor

R1B2 Release 1, Build 2 of the CHART II System

R1B2A Release 1, Build 2A of the CHART II System

TSS Transportation Sensor System

UML Unified Modeling Language

R1B2A Servers Detailed Design REF-1 10/26/00

References
CHART II Business Area Architecture Report, document number M361-BA-005R0, Computer
Sciences Corporation and PB Farradyne.

CHART II System Requirements Specification Release 1 Build 2, document number M361-RS-
002R1, Computer Sciences Corporation and PB Farradyne.

R1B2 High Level Design, document number M362-DS-005R0, Computer Sciences Corporation
and PB Farradyne.

R1B2A High Level Design, document number M303-DS-004R0, Computer Sciences Corporation
and PB Farradyne.

R1B2 Servers Detailed Design, document number M362-DS-006R0, Computer Sciences
Corporation and PB Farradyne.

R1B2 GUI Detailed Design, document number M362-DS-007R0, Computer Sciences
Corporation and PB Farradyne.

FMS R1B2 High Level Design, document number M303-DS-002R0, Computer Sciences
Corporation and PB Farradyne.

The Common Object Request Broker: Architecture and Specification, Revision 2.3.1, OMG
Document 99-10-07

Martin Fowler and Kendall Scott, UML Distilled, Addison-Wesley, 1997

R1B2A Servers Detailed Design A-1 10/26/00

Appendix A – Functional Rights
This table lists the functional rights that have been added to the CHART II system for R1B2A
(or existed previously and apply to R1B2A) and the operations to which they grant access.

Functional Right
Required

Operation Organization
Filterable

Add TSS No
Remove TSS No
Set TSS Configuration No

ConfigureTSS
(new to R1B2A)

Get TSS Configuration No
ViewTSSConfig
(new to R1B2A)

Get TSS Configuration No

Put a TSS in Maintenance Mode No
Move a TSS from maintenance mode to
online.

No
Maintain TSS
(new to R1B2A)

Move a TSS from maintenance mode to
offline.

No

Put a device Online No ManageDeviceComms
(exists in R1B2) Take a device Offline No

R1B2A Servers Detailed Design B-1 10/26/00

Appendix B – Glossary

CORBA Event A CORBA mechanism using which different Chart2 components

exchange information without explicitly knowing about each
other.

CORBA Trader A CORBA service that facilitates object location and discovery.

A server advertises an object in the Trading Service based on the
kind of service provided by the object. A client locates objects of
interest by asking the Trading Service to find all objects that
provide a particular service.

Data Model An object repository that keeps track of changes to the various

objects in the repository and informs about these changes as they
occur, to observers who are interested in the objects in the
repository. A Data Model identifies the subject in a
Subject/Observer design pattern.

Factory A CORBA object that is capable of creating other CORBA

objects of a particular type. The newly created object will be
served from the same process as the factory object that creates it.

FMS Field Management Station through which the CHART II system

communicates with the devices in the field.

Functional Right A privilege that gives a user the right to perform a particular

system action or related group of actions. A functional right may
be limited to pertain only to those shared resources owned by a
particular organization or can pertain to the shared resources of
all organizations.

Graphical User Interface Part of a software application that provides a graphical interface

to its user.

GUI Wrapper Object A GUI wrapper object is one that wraps a server object to

provide it with GUI functionality such as menu handling. It also
helps in performance enhancement by caching data locally
thereby avoiding network calls when not necessary.

Installable Module A plugable GUI module that provides a specific function, which

when registered with the GUI is called on to initialize itself at the
time of GUI startup and shut down at the time of GUI shut down.

R1B2A Servers Detailed Design B-2 10/26/00

Navigator A Navigator is a GUI window that contains a tree on the left-
hand side and a list on the right hand side. Tree elements
represent groups of objects and the list on the right hand side
represents the objects in the selected group.

Object Discovery A GUI mechanism in which the client periodically asks the

CORBA Trading Service to find objects of those types that are
of interest to the GUI, such as DMS, HAR, Plan etc.

Operator A CHART II user that works at an Operations Center.

Port A software object used to model a physical communications

port.

Port Manager A software object that manages access to one or more

communications ports.

Protocol Handler A software object that contains code that encapsulates the

specific communications sequences required to command a field
device.

RTMS A traffic sensor capable of sensing volume, speed, and

occupancy for up to 8 lanes of traffic.

Service Application A software application that can be configured to run one or more

service application modules and provides them basic services
needed to serve CORBA objects.

Service Application Module A software module that serves a related group of CORBA

objects and can be run within the context of a service
application.

Token A token or access token is a security blob that encloses

information about a user and the functional rights associated
with the user. All secured Chart2 operations require a token to be
passed to it and based on the functional rights found in a token a
user is allowed or denied access.

Transportation Sensor
System

A system capable of sensing and communicating traffic
parameters.

User A user is someone who uses the CHART II system. A user can

perform different operations in the system depending upon the
roles they have been granted.

